期刊文献+

Finite p-Groups all of Whose Subgroups of Index p^(3) are Abelian 被引量:10

原文传递
导出
摘要 Suppose that G is a finite p-group.If all subgroups of index p^(t)of G are abelian and at least one subgroup of index p^(t−1)of G is not abelian,then G is called an A_(t)-group.We useA0-group to denote an abelian group.From the definition,we know every finite non-abelian p-group can be regarded as an A_(t)-group for some positive integer t.A_(1)-groups and A_(2)-groups have been classified.Classifying A_(3)-groups is an old problem.In this paper,some general properties about A_(t)-groups are given.A_(3)-groups are completely classified up to isomorphism.Moreover,we determine the Frattini subgroup,the derived subgroup and the center of every A_(3)-group,and give the number of A_(1)-subgroups and the triple(μ_(0),μ_(1),μ_(2))of every A_(3)-group,whereμi denotes the number of A_(i)-subgroups of index p of A_(3)-groups.
出处 《Communications in Mathematics and Statistics》 SCIE 2015年第1期69-162,共94页 数学与统计通讯(英文)
基金 This work was supported by NSFC(Nos.11371232,11471198) by NSF of Shanxi Province(No.2013011001).
  • 相关文献

参考文献2

二级参考文献22

  • 1An L J, Hu R F, Zhang Q H. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅳ). ArXiv:1310.5503.
  • 2Berkovich Y. Groups of Prime Power Order I. Berlin-New York: Walter de Gruyter, 2008.
  • 3Fang X G, An L J. A classification of finite metahamiltonian p-groups. ArXiv:1310.5509.
  • 4Hall M, Senior J K. The Groups of Order 2n (n≤ 6). New York: MacMillan, 1964.
  • 5Huppert B. Endliche Gruppen I. Berlin: Springer-Verlag, 1967.
  • 6Qu H P, Xu M Y, An L J. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅲ). ArXiv:1310.5496.
  • 7Qu H P, Yang S S, Xu M Y, et al. Finite p-groups with a minimal non-abelian subgroup of index p (Ⅰ). J Algebra,2012, 358: 178-188.
  • 8Qu H P, Zhao L B, Gao J, et al. Finite p-groups with a minimal non-abelian subgroup of index p (V). J Algebra Appl, submitted.
  • 9Tuan H F. A theorem about p-groups with abelian subgroup of index p. Acad Sinica Science Record, 1950, 3: 17-23.
  • 10Xu M Y. An Introduction to Finite Groups (in Chinese). Beijing: Science Press, 1987.

共引文献9

同被引文献20

引证文献10

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部