期刊文献+

分数阶不确定Rikitake系统的滑模同步 被引量:2

Sliding mode synchronization of fractional-order Rikitake systems
下载PDF
导出
摘要 利用积分滑模方法,研究不确定分数阶Rikitake系统的滑模同步,提出分数阶滑模面的构造与控制器的设计方案,获得Rikitake主从系统取得滑模同步的2个充分条件.研究结果表明,通过设计适当的滑模函数与控制器,不确定分数阶Rikitake的主从系统可取得滑模同步. Sliding mode synchronization of uncertainty fractional-order Rikitake systems are studied using sliding mode method.And fractional-order sliding mode surfaces and controllers are designed.Two sufficient conditions are arrived for Rikitake systems getting sliding mode synchronization.The research conclusion shows that the master-slave systems of uncertainty fractional-order Rikitake systems are sliding mode synchronization if proper sliding mode functions and controllers are designed.
作者 王晓东 毛北行 陈灿 WANG Xiaodong;MAO Beixing;CHEN Can(School of mathematics,Zhengzhou University of Aeronautics,Zhengzhou 450015,China)
出处 《扬州大学学报(自然科学版)》 CAS 北大核心 2021年第2期7-10,49,共5页 Journal of Yangzhou University:Natural Science Edition
基金 国家自然科学青年基金资助项目(11801528,41906003)。
关键词 分数阶滑模面 Rikitake系统 滑模同步 fractional-order sliding mode surfaces Rikitake systems sliding mode synchronization
  • 相关文献

参考文献2

二级参考文献17

  • 1王兴元,武相军.不确定Chen系统的参数辨识与自适应同步[J].物理学报,2006,55(2):605-609. 被引量:42
  • 2王兴元,武相军.变形耦合发电机系统中的混沌控制[J].物理学报,2006,55(10):5083-5093. 被引量:24
  • 3L M Pecora, T L Carroll. Synchronization in chaotic systems[J].Phys. Rev. Lett.. 1990,64(8) :821 - 827.
  • 4G Chen, X Dong. From chaos to order: Methodologies, perspectives and applications [ M ]. Singapore: World Scientific, 1998.
  • 5J H Park. Adaptive synchronization of R? ssler system with uncertain param- eters [ J ]. Chaos, Solitons & Fractals, 2005,25 (2) :333 - 338.
  • 6S H Chen, et al. Adaptive synchronization of uncertain R? ssler hyperchaotic system based on parameter identification [ J ]. Physics Letters A. 2004,321 ( 1 ) :50 -55.
  • 7I Keisuke. Chaos in the Rikitake two - disc dynamo system[ J]. Earth and Planetary Science Letters, 1980, 51 (2) :451 -456.
  • 8A Vanecek, S Celikovsk?. Control systems: From linear analysis to synthesis of chaos[M]. London: Prentice - Hall, 1996.
  • 9K Ramasubramanian, M S Sriram. A comparative study of computation of Lyapunov spectra with different algorithms [ J ]. Physica D. 2000,139:72 - 86.
  • 10K Gopalsamy. Stability and oscillations in delay differential equations of population dynamics [ M ]. Dordrecht: Kluwer Academic Publishers, 1992.

共引文献17

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部