摘要
Recently,the Liutex-based force field models are proposed and applied to some two-dimensional flows to explore the possibility of direct vortex control strategies.In this paper,we applied the Liutex-based centripetal force model to three-dimensional flow around a circular cylinder at Re=3900.The turbulent flows around the three-dimensional cylinder are modeled by the delayed detached-eddy simulations based on the two-equation k-ω shear stress transport(SST)model.The cylinder flow without adding the force field model is simulated in the first place.The statistical flow quantities are compared with experimental data to validate the accuracy of the current numerical models.Then the force field model is applied to the momentum equation in a specific control region near the cylinder to study the change of flow field and hydrodynamic performance.The effect of different control region locations with the same force field strength is discussed to find out the most influenced locations on the drag and lift.Based on the screened control region,the influence source term strength is further studied.Variations on the global statistical flow quantities,local instantaneous three-dimensional flow structures are analyzed and discussed.It is concluded that the Liutex-based force field model can effectively change the hydrodynamic behavior of flow past a cylinder and may provide a new direction for performance improvement and optimization.
基金
Projects supported by the National Natural Science Foundation of China(Grant Nos.51909160,51879159)
the National Key Research and Development Program of China(Grant Nos.2019YFB1704200,2019YFC0312400).