期刊文献+

源漏偏置电压对AlGaN/GaNHEMT太赫兹探测器灵敏度的调控 被引量:1

Regulation of Source-Drain Bias Voltage on the Sensitivity of AlGaN/GaN HEMT Terahertz Detector
原文传递
导出
摘要 天线耦合的场效应晶体管(FET)太赫兹自混频探测器通常工作在零源漏偏压下,设置恰当的栅极电压可获得最佳的灵敏度。测试分析了天线耦合AlGaN/GaN高电子迁移率晶体管(HEMT)太赫兹自混频探测器的源漏偏置电压对太赫兹自混频响应度和噪声的调控作用。研究结果表明,源漏偏置电压在增强响应度的同时也大幅度增强了探测器输出的噪声,特别是1/f噪声,但是在适当的偏置电压下探测器的噪声等效功率(NEP)仍可低于零偏压下的NEP,最佳NEP分别为50pW/√Hz和30pW/√Hz。因此,HEMT自混频探测器在源漏偏置电压下可实现更高的灵敏度,并具有更低的输出阻抗和更高的响应速度。 Antenna-coupled field-effect transistor(FET)terahertz self-mixing detectors usually operate at zero source-drain bias voltage,and the optimal sensitivity can be obtained by setting the appropriate gate voltage.The regulation effects of source-drain bias voltage of antenna-coupled AlGaN/GaN high electron mobility transistor(HEMT)terahertz self-mixing detector on the terahertz self-mixing responsivity and noise were tested and analyzed.The research results indicate that the source-drain bias voltage enhances the responsivity and greatly enhances the output noise of the detector,especially the 1/f noise.However,the noise equivalent power(NEP)of the detector at the proper bias voltage can be lower than that at zero bias voltage,and the optimal NEPs are 50pW/√Hz and 30pW/√Hz,respectively.Hence,the HEMT self-mixing detector can realize higher sensitivity,lower output impedance and higher response speed at the source-drain bias voltage.
作者 刘亮 熊圣浩 丁青峰 冯伟 朱一帆 秦华 Liu Liang;Xiong Shenghao;Ding Qingfeng;Feng Wei;Zhu Yifan;Qin Hua(Key Laboratory of Nano Devices and Applications,Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO),Chinese Academy of Sciences,Suzhou 215123,China;School of Physical Science and Technology,Shanghai Tech University,Shanghai 201210,China)
出处 《微纳电子技术》 CAS 北大核心 2021年第10期875-881,共7页 Micronanoelectronic Technology
基金 国家自然科学基金资助项目(61775231,61975227) 江苏省重点研发计划项目(BE2018005)。
关键词 太赫兹探测器 高电子迁移率晶体管(HEMT) 氮化镓(GaN) 噪声等效功率(NEP) 自混频 噪声 terahertz detector high electron mobility transistor(HEMT) gallium nitride(GaN) noise-equivalent power(NEP) self-mixing noise
  • 相关文献

参考文献5

二级参考文献46

  • 1刘盛纲.太赫兹科学技术的新发展[J].中国基础科学,2006,8(1):7-12. 被引量:192
  • 2CROCKER A, GEBBIE H A, KIMMIT M F, et al. Stimulated emission in the far infrared[J]. Nature, 1964, 201: 250.
  • 3GEBBIE H A, STONE N W B, FINDLAY F D. Interferometric observations on far infra-red stimulated emissioin sources[J]. Nature, 1964, 202: 169-170.
  • 4GEBBIE H A, STONE N W B, FINDLAY F D. A stimulated emission source at 0.34 millimetre wave-length[J]. Nature, 1964, 202: 685.
  • 5HU B B, NUSS M C. Imaging with terahertz waves[J]. Opt Lett, 1995, 20(4): 1716.
  • 6PICKWELL E, WALLACE V P. Biomedical applications of terahertz technology[J]. J Phy D Appl Phys, 2006, 39(17): 301-310.
  • 7SIEGEL P H. Terahertz technology[J]. IEEE MTT, 2002, 50 (3): 910.
  • 8ARNONE D D, CIESLA C M. Application of terahertz (THz) technology to medical imaging[C]//Proc SPIE Terahertz Spectroscopy Applications II. Bellingham, WA: International Society for Optical Engineering, 1999: 209-219.
  • 9ANDREW L. Cosmic Background and space science at THz frequencies[C]//2008 IRMMW-THz Conference. Pasadena, California, USA: California Institute of Technology, 2008.
  • 10FITZGERALD A J, BERRY E, ZINOV'EV N N, et al. Catalogue of human tissue optical properties at terahertz frequencies[J]. J Biol Phys. 2003, 29(2): 123-128.

共引文献143

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部