期刊文献+

线上学习效果评价及其影响因素 被引量:4

Online Learning Effect Evaluation and Its Influencing Factors
下载PDF
导出
摘要 为了明确影响线上学习效果的关联性因素,更好地帮助教师有效提升线上教学质量,依据实际线上教学数据,运用主成分Logistic回归分析模型发现变量之间的因果关系,借助大数据分析技术挖掘学生的在线学习行为,从而找出影响线上学习效果的主要因素。结果表明:选取的学生行为指标与学习效果之间存在相关性;所有指标中仅学习次数与学习效果具有负面效应;课堂互动和课堂讨论是影响线上学习效果的关键因素。 In order to clarify the related factors affecting online learning effect and help teachers to effectively improve the quality of online teaching,according to the actual online teaching data,the principal component logistics regression analysis model was used to find the causal relationship between variables,and the big data analysis technology was used to excavate students’online learning behavior,so as to find out the main factors affecting online learning effect.The results show that there is a correlation between the selected student behavior indicators and the learning effect.Only learning times and learning effects have negative effects in all indicators.Classroom interaction and classroom discussion are the key factors affecting online learning effect.
作者 王晶 司凤山 李会 WANG Jing;SI Feng-shan;LI Hui(School of Management Science and Engineering,Anhui University of Finance and Economics,Bengbu 233030,China)
出处 《辽东学院学报(自然科学版)》 CAS 2021年第3期224-228,共5页 Journal of Eastern Liaoning University:Natural Science Edition
基金 安徽财经大学教研项目(acjyyb2020076) 安徽省教育厅质量工程项目(2020xsxxkc012,2020szsfkc0020)。
关键词 线上教学 学习行为 学习效果 主成分Logistic回归 online teaching learning behavior learning effect principal component logistics regression
  • 相关文献

参考文献8

二级参考文献102

  • 1Basilevsky, A. Statistical factor analysis and related methods: theory and applications[ M]. John Wiley & Sons, Inc. 1994.
  • 2Hosmer, W. D., S. Lemeshow, Applied logistic regression [ M ]. John Wiley & Sons, Inc. 2000.
  • 3Huffman, P. S., J. D. Ward. The prediction of default for hight yield bond issues[J]. Review of Financial Economics 5(1996) ,pp.75 -89.
  • 4Laitinen, K.E., T. Laitinen. Bankruptcy prediction : application of the taylor expansion in logistic regression [ J ]. International Review of Financial Analysis 9(2000), pp. 327 -349.
  • 5Liang, Q., Corporate financial distress diagnosis in China; empirical analysis using credit scoring models [ J ]. Hitotsubashi Journal of Commerce and Management Vol.38,pp. 13-28.
  • 6Martin, D. Early warning of bank failure [ J]. Journal of Banking &Finance 1 ( 1977), pp. 249 ~ 276.
  • 7鲁茂.几种处理多重共线性方法的比较研究[J].统计与决策,2007,23(13):8-10. 被引量:27
  • 8薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2013.
  • 9R. Llorente, M. Morant. Data Mining in Higher Education [J]. New Fundamental Technologies in Data Mining, 2011,201-220.
  • 10V. Kumar, A. Chadha. An empirical study of the applications of data mining techniques in higher education [J]. International Journal of Advanced Computer Science and Applications, 2, 2011.

共引文献429

同被引文献32

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部