期刊文献+

基于注意力机制的一维卷积神经网络行星齿轮箱故障诊断 被引量:4

Fault Diagnosis of Planetary Gearbox Based on One dimensional Convolutional Neural Network with Attention Mechanism
下载PDF
导出
摘要 针对行星齿轮箱故障信号成分复杂和时变性强的特点,提出了基于注意力机制的一维卷积神经网络(1D CNN)行星齿轮箱故障诊断方法。首先,将行星齿轮箱各类故障状态的原始振动信号进行分段处理,作为模型的输入;其次,利用一维卷积神经网络对行星齿轮箱的原始振动信号学习齿轮故障特征,结合注意力机制(AM)对特征序列自适应的赋予不同的权重,增强故障特征信息;最后,利用Softmax分类器实现行星齿轮箱的故障诊断。通过故障实验验证以及与其他模型的对比,该故障诊断模型具有较强的学习能力,诊断性能优于其他的深度学习模型,有较好的工程实际意义。 Aiming at the characteristics of complex signal components and strong time variability of planetary gearbox fault,a one dimensional convolutional neural network fault diagnosis model for planetary gearbox based on attention mechanism was designed and implemented.Firstly,the original vibration signals of planetary gearbox in various fault states are processed in sections as the input of the model.Secondly,a one dimensional convolutional neural network was used to extract the fault features from the original vibration signals of planetary gears,and the Attention Mechanism(AM)is used to self adaptively assign different weights to the feature sequences to enhance the fault feature information.Finally,the fault diagnosis of planetary gearbox is realized by Softmax classifier.Through verification by failure experiments and comparison with other models,it is found that the fault diagnosis model has a strong learning ability,and its diagnostic performance is better than other deep learning models,and has good engineering practical significance.
作者 杨永灿 刘韬 柳小勤 王廷轩 王振亚 YANG Yongcan;LIU Tao;LIU Xiaoqin;WANG Tingxuan;WANG Zhenya(Faculty of Mechanical and Electrical Engineering,Kunming University of Science and Technology,Kunming 650500,China)
出处 《机械与电子》 2021年第10期3-8,共6页 Machinery & Electronics
基金 国家自然科学基金资助项目(52065030 51875272)。
关键词 行星齿轮箱 故障诊断 卷积神经网络 注意力机制 planetary gearbox fault diagnosis convolutional neural network attentional mechanism
  • 相关文献

参考文献5

二级参考文献48

  • 1于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 2杨宇,于德介,程军圣.基于EMD与神经网络的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):85-88. 被引量:146
  • 3刘琳,沈颂华,刘强.基于小波模糊网络的电厂汽轮发电机组故障诊断[J].电网技术,2005,29(16):11-15. 被引量:5
  • 4GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 5HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 6KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 7BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 8WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 9BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 10ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.

共引文献730

同被引文献41

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部