期刊文献+

硬质合金立铣刀铣削难加工材料的仿真研究 被引量:2

Simulation Study on Hard to Machine Materials with Carbide End Mill
下载PDF
导出
摘要 基于UG三维建模软件和AdvantEdge有限元仿真软件,对硬质合金立铣刀切削Ti-6Al-4V和Cr12进行切削仿真。通过改变刀具的螺旋角和前角,以切削力和切削温度作为评价标准来优化硬质合金立铣刀,进而改善切削难加工材料的性能。仿真结果表明:硬质合金立铣刀加工Ti-6Al-4V时螺旋角的合理范围为40°~45°,前角范围为8°~10°;硬质合金立铣刀加工Cr12时螺旋角的合理范围为35°~45°,其中以40°附近为最优,前角范围为15°~20°。 Based on 3D modeling software UG and AdvantEdge finite element simulation software,cutting simulation of Ti-6Al-4V and Cr12 with carbide end mill was carried out.By changing the helix angle and rake angle of the cutting tool,the cutting force and cutting temperature were used as the evaluation criteria to optimize the cemented carbide end mill,so as to improve the performance of cutting difficult to cut materials.The simulation results show that the reasonable range of helix angle for Ti-6Al-4V with carbide end mill is 40°to 45°,the range of the front angle is 8°to 10°.The reasonable range of the helix angle for Cr12 with carbide end mill is 35°to 45°,the optimum range is around 40°,and the front angle range is 15°to 20°.
作者 王广洲 吴春亚 程健 陈明君 Wang Guangzhou;Wu Chunya;Cheng Jian;Chen Mingjun(School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China)
出处 《机电工程技术》 2021年第9期6-9,共4页 Mechanical & Electrical Engineering Technology
基金 国家重点研发计划资助项目(编号:2017YFB0305900)。
关键词 TI-6AL-4V CR12 硬质合金立铣刀 AdvantEdge UG 切削仿真 Ti-6Al-4V Cr12 carbide end mill AdvantEdge UG cutting simulation
  • 相关文献

参考文献4

二级参考文献24

  • 1刘战强,艾兴,李甜甜,万熠.PCBN刀具加工TC4钛合金的切削加工性[J].山东大学学报(工学版),2009,39(1):77-83. 被引量:22
  • 2艾兴,等.高速切削加工技术[M].北京:国防工业出版社,2004.
  • 3E O Ezugwu, R B Da Silva, J Bonney, et al. Evaluation of the performance of CBN tools when turning Ti 6A1 - 4V alloy with high pressure coolant supplies[ J ]. International Journal of Machine Tools & Manufacture ,2005,45 : 1009 - 1014.
  • 4Zou L, Dong G, Zhou M. Investigation on frictional wear of single crystal diamond against ferrous metals [ J ]. lnt J Re- fract Met Hard Mater, 2013, 41 : 174-179.
  • 5Wang C, Cheng K, Nelson N, et al. Cutting force-based analysis and correlative observations on the tool wear in dia- mond turning of single-crystal silicon [ J ]. P IMechE Part B: J Engineering Manufacture, 2014: 743137324.
  • 6Tanaka H, Shimada S, Ikawa N, et al. Wear mechanism of diamond cutting tool in machining of steel[J].Key Eng Ma- ter, 2001, 196(8): 69-78.
  • 7Shimada S, Tanaka H, Higuchi M, et al. Thermo-chemical wear mechanism of diamond tool in machining of ferrous met- als[J].CIRP Ann-Manuf Tech, 2004, 53( 1 ): 57-60.
  • 8Narulkar R, Bukkapatnam S, Raff L M, et al. Molecular dynamics simulations of diffusion of carbon into iron [J].Philos Mag, 2008, 88(8) : 1259-1275.
  • 9Narulkar R, Bukkapatnam S, Raft L M, et al. Graphitiza- tion as a precursor to wear of diamond in machining pure i- ron : A molecular dynamics investigation [ J ]. Comp MaterSci, 2009, 45(2) : 358-366.
  • 10Lee B J. A modified embedded-atom method interatomic po- tential for the Fe-C system[ J ]. Acta Mater, 2006, 54 (3) : 701-711.

共引文献14

同被引文献13

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部