摘要
通过超声置换反应制备钯铜共修饰海绵铁三金属催化剂(Pd-(Cu-s-Fe^(0))),研究了三金属负载顺序、金属负载量、材料投加量以及重复利用对材料降解对硝基苯酚(PNP)的影响,并利用扫描电子显微镜(SEM)和X射线光电子能谱(XPS)表征材料表面结构特征.结果表明,Pd-(Cu-s-Fe^(0))催化活性高于Cu-(Pd-s-Fe^(0))和(Cu-Pd)-s-Fe^(0);Cu和Pd的最佳负载量分别为5%和0.025%.在100mL初始浓度为100mg/L的PNP溶液中投加3g Pd-(Cu-s-Fe^(0))并超声反应30min,PNP的降解率超过80%,降解反应基本符合一级动力学方程;Pd-(Cu-s-Fe^(0))材料循环利用4次表现出良好的循环利用性能.此外,PNP的主要催化还原产物是对氨基苯酚(PAP),主要的反应路径是催化还原反应.
Pd-(Cu-s-Fe^(0))trimetals were synthesized adopting with displacement reactions under ultrasonic conditions,and the surface structure of the aforementioned materials was further characterized with scanning electron microscope(SEM)and X-ray photoelectron spectroscopy(XPS).Moreover,the effects of noble metal loading sequence,the loading amount,input dosage and recycling reuse for the degradation of p-nitrophenol(PNP)was studied in detail.The experimental results show that the catalytic activity of Pd-(Cu-s-Fe^(0))was higher than that of Cu-(Pd-s-Fe^(0))and(Cu-Pd)-s-Fe^(0).The loading amounts of Cu and Pd were optimized as 5%and 0.025%,respectively.Under the optimized conditions including 30g/L of Pd-(Cu-s-Fe^(0)),the removal content of PNP(100mL,initial concentration of 100mg/L)reached more than 80%after 30min of ultrasonic reactions,and the degradation reactions conformed to a pseudo-first-order kinetics equation.Furthermore,after 4times of recycling tests,Pd-(Cu-s-Fe^(0))showed good recycling performance.Based on the UV-visible spectral variations and high-performance liquid chromatography,we proposed the degradation mechanism mainly via catalytic reductions of PNP into p-aminophenol(PAP).
作者
李方芳
鞠勇明
邓东阳
贾文超
丁紫荣
雷国元
LI Fang-fang;JU Yong-ming;DENG Dong-yang;JIA Wen-chao;DING Zi-rong;LEI Guo-yuan(Department of Resources and Environmental Engineering,Wuhan University of Science and Technology,Wuhan 430000,China;South China Institute of Environmental Science,Ministry of Ecology and Environment of the People’s Republic of China,Guangzhou 510655,China;Nanjing Institute of Environmental Science,Ministry of Ecology and Environment of the People’s Republic of China,Nanjing 210042,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2021年第10期4670-4676,共7页
China Environmental Science
基金
国家重点研发计划(2019YFE0111100)
广东省国际合作项目(2018A050506045)
广东省基础与应用基础研究基金资助项目(2020A1515010969)
公益性科研院所专项项目(GYZX210301)。