摘要
利用有限差分格式考虑了具有非齐次初边值条件的临界Schrödinger映射的数值解,证明了其收敛性及稳定性,并通过数值实验表明,格式具有较好的有效性和稳定性.
In this paper,we study finite difference scheme for the nonhomgeneous initial boundary value problem of critical Schrödinger map in two-dimensional space.We get the convergence and stability of the difference scheme.At the same time,we prove that this difference scheme has good effectiveness and stability by numerical experiments.
作者
邓海云
刘辉
宋文静
Deng Haiyun;Liu Hui;Song Wenjing(Department of Applied Mathematics,Nanjing Audit University,Nanjing 211815;School of Mathematical Sciences,Qufu Normal University,Shandong Qufu 273165;College of Science,Xi'an Polytechnic University,Xi'an 710048)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2021年第5期1311-1322,共12页
Acta Mathematica Scientia
基金
国家自然科学基金(12001276,12001275,12071219,11901342,12001415)
山东省自然科学基金(ZR:2018QA002)
中国博士后科学基金(2019M652350)。