期刊文献+

基于手机信令数据的出行端点识别效果评估 被引量:5

Evaluation of Activity Location Recognition Using Cellular Signaling Data
下载PDF
导出
摘要 为了研究利用手机信令数据识别个体出行端点的应用效果,开展实地采集手机信令数据的出行试验,且同步采集相应的GPS轨迹数据和出行日志作为算法评估的真实数据,提出出行端点识别的3阶段处理算法.首先,提出等时距补点算法平衡各信令定位点的时间权重;然后,利用凝聚层次聚类算法将定位点聚类成不同的类簇;最后,针对已有研究中缺乏关注的类簇震荡现象,提出新的震荡修正算法对聚类结果做进一步优化.案例结果表明:本文提出的方法对出行端点识别的精度、距离误差和时间误差上均有较好的效果,出行端点识别个数的精度在84%以上,端点位置识别距离平均误差在220 m以内,出行端点的离开和到达时间的平均误差分别为7.7 min和5.3 min;在不同的出行目的的比较中,以工作为目的的端点识别效果最好,以娱乐购物为目的的端点识别效果相对较差. In order to investigate the recognition results of individuals’activity locations using cellular signaling data,the field experiment for collecting cellular signaling data was carried out.The GPS trajectory data and the travel logs were collected synchronously as the real data for reference.A three-step method for recognizing activity locations is proposed.Firstly,an equal time interval interpolation method is used to balance the time weight of each trace.Secondly,an agglomerative hierarchical clustering algorithm is applied to merge the traces into different clusters.Finally,a new method of correcting location oscillation is proposed,to solve the problem that clusters in the same activity location oscillate.Results show that the proposed method performs well in term of the accuracy of identifying activity locations,distance error and time error.The average recognition accuracy and distance error is over 84%and within 220 m,respectively.The average errors of departure and arrival time are 7.7 min and 5.3 min,respectively.In the comparison of different travel purposes,the activity locations for work receive the best recognition results,and the results of the locations for shopping is relatively inferior.
作者 杨飞 姜海航 姚振兴 刘好德 YANG Fei;JIANG Haihang;YAO Zhenxing;LIU Haode(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;School of Highway,Chang’an University,Xi’an 710054,China;Urban Transportation Center,China Academy of Transportation Science,Beijing 100029,China)
出处 《西南交通大学学报》 EI CSCD 北大核心 2021年第5期928-936,F0002,共10页 Journal of Southwest Jiaotong University
基金 国家重点研发计划(2018YF1600900) 国家自然科学基金(51678505) 中央高校基本科研业务费专项资金(300102219301,300102210204) 贵州省交通运输厅科研项目(2018-321-026) 教育部人文社会科学基金青年基金(20XJCZH011) 高等学校学科创新引智计划(B20035)。
关键词 出行调查 出行端点识别 手机信令 层次聚类 端点震荡修正算法 traffic survey activity location recognition cellular signaling hierarchical clustering location oscillation correction algorithm
  • 相关文献

同被引文献35

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部