期刊文献+

基于五维模型的数据中心故障恢复验证方法研究 被引量:1

Research on the Verification Method of Data Center Fault Recovery Based on Five-dimensional Model
下载PDF
导出
摘要 在信息系统中,故障恢复是一个很难的课题。对于故障恢复能力的衡量能帮助运维人员更加有针对性地开展运维工作。然而,目前对于故障恢复程度没有一定的评估方法。因此,研究聚焦于数据中心故障恢复验证方法,构建包含主机、系统、网络、数据库、中间件等运维对象恢复评估模型。设计了一个五维模型算法,全面考虑数据中心业务及软硬件资源恢复情况,可全方位评估数据中心故障恢复能力。 In the information system,fault recovery is a very difficult task.The measurement of fault recovery ability can help operation and maintenance personnel to carry out operation and maintenance work more accurately.At present,there is no certain evaluation method for the degree of fault recovery.This paper focuses on data center fault-recovery verification methods,builds the recovery evaluation model of operation and maintenance objects including host,system,network,database,and middleware.We design a 5-dimensional model scheme to comprehensively consider the data center business and software and hardware resource recovery,and comprehensively evaluate the data center fault recovery ability.
作者 王丽君 张银铁 万晶 WANG Lijun;ZHANG Yintie;WAN Jing(State Grid Electric Power Research Institute Co. Ltd., Nanjing 211106, China)
出处 《微型电脑应用》 2021年第10期67-69,共3页 Microcomputer Applications
基金 国家电网有限公司总部科技项目(5700-202018194A-0-0-00)
关键词 数据中心 故障恢复 评估模型 data center fault recovery evaluation model
  • 相关文献

参考文献3

二级参考文献24

  • 1黄树帮,叶留金,袁宇波,陈泾生,周剑,李涛.电网继电保护及故障信息处理主站系统的设计和实现[J].电力系统自动化,2004,28(16):88-92. 被引量:20
  • 2刘华,白义传.河南电网继电保护及故障信息管理系统建设[J].电力系统自动化,2006,30(9):84-87. 被引量:23
  • 3姜健宁,章坚民.电网故障信息系统中的一次故障建模与识别[J].电力系统自动化,2006,30(16):51-56. 被引量:11
  • 4KUBAT M,HOLTER C,MATWIN S. Machine learning for the detection of oil spills in satellite radar images[J].{H}Machine Learning,1998,(2/3):195-215.
  • 5PHUA C,ALAHAKOON D,LEE V. Minority report in fraud detection:classification of skewed data[J].SIGKDD Explorations,2004,(01):50-59.
  • 6PEREZ J M,MUGUERZA J,ARBELAITZ O. Consolidated tree classifier learning in a car insurance fraud detection domain with class imbalance[A].{H}Berlin:Springer-Verlag,2005.381-389.
  • 7COHEN G,HILERIO M,SAX H. Data imbalance in surveillance of nosocomial infections[A].{H}Berlin:Springer-Verlag,2003.109-117.
  • 8CHEN J X,CHENG T H,CHAN A L F. An application of classification analysis for skewed class distribution in therapeutic drug monitoring-the case of vancomycin[A].Piscataway,NJ:IEEE Press,2004.35-39.
  • 9RADIVOJAC P,KORAD U,SIVALINGAM K M. Learning from class-imbalanced data in wireless sensor networks[A].Piscataway,NJ:IEEE Press,2003.3030-3034.
  • 10YE Z F,LU B L. Learning imbalanced data sets with a min-max modular support vector machine[A].Piscataway,NJ:IEEE Press,2007.1673-1678.

共引文献30

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部