期刊文献+

一种频域特征提取自编码器及其在故障诊断中的应用研究 被引量:9

A Frequency Domain Feature Extraction Auto-encoder and Its Applications on Fault Diagnosis
下载PDF
导出
摘要 提出一种可以直接从振动信号中提取频域特征的非对称自编码器方法。与传统自编码器以重构振动信号作为目标输出不同,频域自编码器使用振动信号的频谱作为目标输出,这种非对称的自编码器可以学习振动信号与其频谱之间的映射关系,使得编码器可以输出频域特征。为了说明提出的频域自编码器的特征提取效果,在轴承数据集上进行特征提取和故障诊断实验,在没有引入标签信息的情况下,频域自编码器提取到的特征表现出较好的聚类效果,能够区分轴承的不同故障类型;进一步进行了泛化实验,训练分类器时使用1%的有标签样本,可以达到90%以上的故障分类准确率。实验结果表明,频域自编码器与传统自编码器相比,可以更好地提取振动信号的故障特征信息,具有一定的实用价值。 An asymmetric frequency domain auto-encoder method was proposed to extract spectrum characteristics of vibration signals.Unlike traditional auto-encoder,which took reconstructed vibration signals as the target output,the frequency domain auto-encoder used the frequency spectrum of vibration signals as the target output.This asymmetric auto-encoder might learn the mapping between vibration signals and the frequency spectrum,so that the encoder might output frequency domain features.In order to illustrate the feature extraction effectiveness of the proposed frequency domain auto-encoder,feature extraction and fault diagnosis experiments were carried out on bearing data sets.Without introducing label information,the features extracted by the frequency domain auto-encoder show better clustering effectiveness and may distinguish different fault types of the bearings.In the further generalization experiment,using 1%labeled samples in training classifier may achieve more than 90%of fault classification accuracy.The experimental results show that the frequency domain auto-encoder may extract fault feature information from vibration signals better than that of the traditional auto-encoder and has certain practical value.
作者 赵志宏 李乐豪 杨绍普 李晴 ZHAO Zhihong;LI Lehao;YANG Shaopu;LI Qing(State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety,Shijiazhuang,050043;School of Computation and Informatics,Shijiazhuang Railway Institute,Shijiazhuang,050043)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2021年第20期2468-2474,共7页 China Mechanical Engineering
基金 国家自然科学基金(11972236,11790282)。
关键词 特征提取 故障诊断 降噪自编码器 深度学习 feature extraction fault diagnosis denoising auto-encoder deep learning
  • 相关文献

参考文献15

二级参考文献87

  • 1伍奎,李润方,刘景浩.智能化系统的知识表达与推理机制[J].机械工程学报,2005,41(5):98-103. 被引量:19
  • 2徐芃,徐士进,尹宏伟.有杆抽油系统故障诊断的人工神经网络方法[J].石油学报,2006,27(2):107-110. 被引量:33
  • 3赵薇,贾民平,黄鹏,陈左亮,张立成,周全.故障树分析及其在制粉系统故障诊断中的应用[J].振动.测试与诊断,2006,26(4):288-290. 被引量:11
  • 4袁胜发,褚福磊,何永勇.基于网格支持矢量机的涡轮泵多故障诊断[J].机械工程学报,2007,43(4):152-158. 被引量:9
  • 5GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 6HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 7KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 8BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 9WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 10BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.

共引文献806

同被引文献77

引证文献9

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部