摘要
对于电力企业高危岗位人员的准确定位可以降低安全事故、保证职工生命财产安全。结合无线传感网络技术,针对人员定位的经典算法-距离向量跳段算法(DV-HOP算法)定位误差大的问题,引入群智能寻优鲸鱼算法优化多目标定位的执行过程,提出一种基于WOA-DV-HOP人员定位算法,解决DV-HOP算法本身存在的锚节点与未知节点之间的距离估计的误差问题,在DV-HOP算法中使用目标优化公式,完成对实现对未知节点坐标的估计和人员的精确定位。研究结果表明,WOA-DV-Hop人员定位算法可以有效提高定位的精度,并且随着信标节点比例、通信半径R和节点总数等参数的增加,人员定位精度呈现上升趋势。
Accurate positioning of personnel in high-risk positions in power companies can reduce safety accidents and ensure the safety of employees'lives and properties.Combined with wireless sensor network technology,aiming at the problem of large positioning error of the classical algorithm of personnel positioning distance vector hop algorithm(DV-Hop algorithm),this paper introduces swarm intelligence optimization algorithm to optimize the execution process of multi-target positioning,This paper proposes a personnel location algorithm based on woa-dv-hop to solve the error problem of distance estimation between anchor node and unknown node in DV-Hop algorithm.In DV-Hop algorithm,the current optimization formula is used to complete the estimation of unknown node coordinates and accurate personnel location.The results show that woa-dv-hop personnel positioning algorithm can effectively improve the positioning accuracy,and with the increase of beacon node proportion,communication radius R and the total number of nodes and other parameters,personnel positioning accuracy presents an upward trend.
作者
刘哲
何子东
靳健欣
董楦
张德广
Liu Zhe;He Zidong;Jin Jianxin;Dong Mu;Zhang Deguang(State Grid Hebei Electric Power Co.,Ltd.,Shijiazhuang,Hebei 050022;Hebei Transmission and Transformation Co.,Ltd.,Shijiazhuang,Hebei 050000)
出处
《现代科学仪器》
2021年第5期275-279,共5页
Modern Scientific Instruments
关键词
鲸鱼算法
无线传感网络
DV-HOP算法
最小跳数
信标节点
whale optimization algorithm
wireless sensor network
DV-Hop algorithm
minimum number of hops
beacon nodes