期刊文献+

融合运动约束的轮式机器人视觉里程计研究

Research on Visual Odometer of Wheeled Robot with Motion Constraint
下载PDF
导出
摘要 针对轮式机器人平面运动的特性,将轮式机器人运动降到二维平面处理。由机器人相机的二维运动特征提出帧间特征点匹配等高约束条件,同时对帧间相机运动方程做线性化近似,提出直线约束条件。两个约束条件可用于误匹配特征点对点筛除,为视觉里程计帧间运动估计提供优质匹配点对。最后对筛选后的匹配点对进行降维处理,并与二维ICP算法相结合,用于估计机器人相机运动轨迹。试验表明,所提出的方法可大大提高视觉里程计运算速度。 According to the characteristics of the wheeled robot's planar motion,the wheeled robot's motion is reduced to a two-dimensional plane.Based on the two-dimensional motion characteristics of the robot camera,the inter-frame feature point matching equal height constraint conditions are proposed,and the linear approximation of the inter-frame camera motion equations is proposed to provide the straight line constraint conditions.The two constraint conditions can be used to filter out mismatched feature points,and provide high-quality matching point pairs for motion estimation between frames of visual odometer.Finally,the dimensional reduction of the matched point pairs after screening is combined with the two-dimensional ICP algorithm to estimate the motion trajectory of the robot camera.Experiments show that the method proposed in this paper can greatly increase the speed of visual odometer.
作者 李少波 王成功 任彦 巩泽辉 LI Shaobo;WANG Chenggong;REN Yan;GONG Zehui(School of Information Engineering,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《电工技术》 2021年第18期36-38,41,共4页 Electric Engineering
基金 国家自然科学基金(编号62063027) 内蒙古自然基金(编号2019MS06002)。
关键词 轮式机器人 特征点匹配 等高约束 直线约束 ICP算法 wheeled robot feature point matching contour constraint straight line constraint ICP algorithm
  • 相关文献

参考文献3

二级参考文献26

  • 1李立春,邱志强,王鲲鹏,于起峰.基于匹配测度加权求解基础矩阵的三维重建算法[J].计算机应用,2007,27(10):2530-2533. 被引量:7
  • 2Rastgar H. Robust self-calibration and fundamental matrix esti- mation in 3D computer vision [D]. Canada: University of Ot- tawa, 2013.
  • 3Emilio Maggio. Video Tracking: Theory and Practice [M]. UK: Queen Mary University of London, 2012: 15-24.
  • 4TSAI J, HANG H. On the design of pattern-based block motion estimation algorithm [J]. IEEE Transactions on Circuits Systems forVideo Technology(S1051-8215), 2010, 20(1): 136-143.
  • 5ARGYRJOU V. Sub-Hexagonal phase correlation for motion estimation [J]. IEEE Transactions on Image Processing (S1057-7149), 2011, 20(1): 110-120.
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints [J]. International Journal of Computer Vision(S0920-5691), 2004, 60(2): 91-110.
  • 7Bay H, Tuytelaars T, Gool L V. SURF: Speeded up robust features [C]// Proceedings of European Conference on Computer Vision, Graz, Austria, May7-13, 2006, 1: 404-417.
  • 8Rublee E, Rabaud V, Konolige K, et al. ORB: An efficient alternative to SIFT or SURF [C]// Proceedings of IEEE International Conference on Computer Vision, Washington, USA, Nov 6-13, 2011: 2564-2571.
  • 9Mair E, Hager G D, Burschka D, et al. Adaptive and generic corner detection based on the accelerated segment test [C]// Proceedings of European Conference on Computer Vision, Crete, Greece, Sep 5-11, 2010, 63(12): 183-196.
  • 10Calonder M, Lepetit V, Fua P. BRIEF: Binary Robust Independent Elementary Features [C]// Proceedings of European Conference onComputerVision, Crete, Greece, Sep5-11, 2010, 63(14): 778-792.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部