期刊文献+

堆叠式非对称深度自编码器检测网络入侵

Stacked Non-symmetric Deep Auto-encoder Detecting Network Intrusion
原文传递
导出
摘要 为了提高网络入侵检测(NID)系统的检测准确度,适应现代网络需求,提出一种入侵检测的深度学习方法。该方法利用堆叠式非对称深度自编码器(NDAE)构建深度学习分类模型,将堆叠式NDAE(深度学习)和随机森林(浅层学习)的优点相结合,以支持NID在现代网络中的运行。实验使用KDD Cup’99和NSL-KDD基准数据集对所提分类器进行评价。实验结果证明了所提方法的有效性,其分类器能够有效降低网络入侵检测的时间,精简数据特征,提高检测精度,实现了最高约5%的召回率提升和最高98.81%的训练时间缩减。 In order to improve the detection accuracy of network intrusion detection(NID) system and meet the needs of modern network, a deep learning method of intrusion detection is proposed. In this method, the stack non-symmetric deep auto-encoder(NDAE) is used to build a deep learning classification model, which combines the advantages of stack NDAE(deep learning) and random forest(shallow learning) to support the operation of NID in modern networks. In the experiment, KDD cup’99 and NSL-KDD benchmark data sets are used to evaluate the proposed classifier. The experimental results show the effectiveness of the proposed method. The classifier can reduce the time of NID, simplify the data features, and improve the detection accuracy. The classifier achieves a recall rate increase of up to 5% and a training time reduction of up to 98.81%.
作者 刘炜 LIU Wei(School of Information Engineering,Shaanxi Xueqian Normal University,Xi'an,710100,China)
出处 《控制工程》 CSCD 北大核心 2021年第9期1879-1885,共7页 Control Engineering of China
基金 陕西省提升公众科学素质计划(2021)项目(2021PSL39) 教育部产学合作同育人项目(201802146010)。
关键词 网络入侵检测 深度学习 非对称深度自编码器 分类器 随机森林 Network intrusion detection deep learning non-symmetric deep auto-encoder classifier random forest
  • 相关文献

参考文献9

二级参考文献69

  • 1刘潭秋,谢赤.基于GARCH模型与ANN技术组合的汇率预测[J].科学技术与工程,2006,6(23):4690-4694. 被引量:5
  • 2Zaman S, Karray F. Lightweight IDS based on features selection and IDS classification scheme. In: Proceedings of the 12th IEEE International Conference on Computa- tional Science and Engineering, Vancouver, Canada, 2009. 365-370.
  • 3Jain A, Zongker D. Feature selection: Evaluation, appli- cation, and small sample performance. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1997, 19(2) : 153-158.
  • 4Kudo M, Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition, 2000, 33(1): 25-41.
  • 5Grandvalet Y, Canu S. Adaptive scaling for feature selec- tion in SVMs. Advances in Neural Information Processing Systems, 2003,15:553-560.
  • 6Arribas J I, Cid-Sueiro J. A model selection algorithm for a posteriori probability estimation with neural networks. IEEE Transactions on Neural Networks, 2005,16 (4) : 799 -809.
  • 7Mao K. Feature subset selection for support vector ma- chines through discriminative function pruning analysis. IEEE Transactions on Systems, Man, and Cybernetics, 2004,34( 1 ) :60-67.
  • 8Kim D, Nguyen H N, Ohn S Y. Fusions of GA and SVM for Anomaly Detection in Intrusion Detection System. Ad- vances in Neural Networks. Lecture Notes in Computer Science, New York : Springer-Verlag, 2005,3498 : 415 - 420.
  • 9Shazzad K M, Jong S P. Optimization of intrusion detec- tion through fast Hybrid feature selection. In: Proceed- ings of the 6th International Conference on Parallel and Distributed Computing, Applications and Technologies, Washington, DC, USA, 2005. 264-267.
  • 10Chen Y, Dai L, Li Y, et al. Building efficient intrusion detection model based on principal component analysis and C4.5 algorithm. In : Proceedings of the 9th IEEE In- ternational Conference on Advanced Communication Tech- nology, Guilin, China, 2006. 2109-2112.

共引文献185

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部