期刊文献+

使用关联检索缓和推荐系统中的稀疏性问题 被引量:3

Using Association Retrieval to Mitigate Sparsity Issues in Recommendation Systems
下载PDF
导出
摘要 协同过滤作为广泛应用的推荐方法,主要根据过去的交易和相似客户的反馈向当前客户推荐内容。但是,由于数据集稀疏性问题,很难区分客户之间的相似兴趣,这限制了协同过滤的可用性。针对数据集稀疏性问题,结合关联检索的相关知识,参考协同过滤算法,实现了一种改进的协同过滤算法来缓解稀疏性问题并提高推荐的质量。最后对提出的新算法进行测试,简述了改进方法的优点和不足。 As a widely used recommendation method, collaborative filtering mainly recommends content to current customers based on past transactions and feedback from similar customers.Due to the sparseness of the data set, it is difficult to distinguish similar interests between customers, which limits the availability of collaborative filtering.Aiming at the problem of sparseness of the data set, combined with the relevant knowledge of association retrieval and referring to the collaborative filtering algorithm, an improved collaborative filtering algorithm was implemented to alleviate the sparsity problem and improve the quality of recommendations.Finally, the proposed new algorithm was tested, and its advantages and disadvantages were briefly described.
作者 张洋 高艳华 郭晓坤 ZHANG yang;GAO Yan-hua;GUO Xiao-kun(The Second Academy of China Aerospace,Beijing 100039,China;Department of Software Research and Development,Beijing Institute of Control and Electronic Technology,Beijing 100038,China)
出处 《计算机仿真》 北大核心 2021年第9期495-500,共6页 Computer Simulation
关键词 协同过滤 关联检索 稀疏性问题 推荐质量 Collaborative filtering Association retrieval Sparsity problem Recommendation quality
  • 相关文献

参考文献8

二级参考文献69

  • 1胡涛,周兵,郑明辉,纪忠原.基于Hadoop的移动云存储系统研究与实现[J].华中科技大学学报(自然科学版),2013,41(S2):181-183. 被引量:4
  • 2陈悦,陈超美,刘则渊,胡志刚,王贤文.CiteSpace知识图谱的方法论功能[J].科学学研究,2015,33(2):242-253. 被引量:7338
  • 3陈悦,刘则渊.悄然兴起的科学知识图谱[J].科学学研究,2005,23(2):149-154. 被引量:823
  • 4Pu P,Chen L,Hu R.A user-centric evaluation framework for recommender systems[C] //Proceedings of the Fifth ACM Conference on Recommender Systems,2011.
  • 5Knijnenburg B P,Willemsen M C,Gantner Z,et al.Explaining the user experience of recommender systems[J] .User Modeling and User-Adapted Interaction,2012,22(4):441-504.
  • 6Cacheda F,Carneiro V,Fernandez D,et al.Comparison of collaborative filtering algorithms:Limitations of current techniques and proposals for scalable,high-performance recommender systems[J] .ACM Trans Web,2011,5(1):2:1-2:33.
  • 7Ma Hao,Zhou Dengyong,Liu Chao,et al.Recommender systems with social regularization[C] //Proceedings of the Fourth ACM International Conference on Web Search and Data Mining,2011.
  • 8Niemann,Katja,Wolpers,et al.A new collaborative filtering approach for increasing the aggregate diversity of recommender systems[C] //Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2013.
  • 9Bobadilla J,Ortega F.A collaborative filtering approach to mitigate the new user cold start problem[J] .KnowledgeBased Sys,2012,26(2):225-238.
  • 10Liu H,Hu Z.A new user similarity model to improve the accuracy of collaborative filtering[J] .Knowledge-Based Systems,2014,56(1):156-166.

共引文献80

同被引文献46

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部