期刊文献+

核主成分马田系统及其应用 被引量:3

Kernel principal component Mahalanobis-Taguchi system and its application
原文传递
导出
摘要 为解决传统马田系统无法有效识别非线性数据问题,提出构建核主成分马田系统.该方法通过核马氏距离的构建,将马田系统和核主成分分析两种方法融合在一起,使其不但具备非线性数据识别能力,还具备数据降噪能力.实例验证表明:核主成分马田系统在降维率、识别准确率、不平衡数据处理能力、特异度和灵敏度等方面不仅优于传统马田系统,还优于BP神经网络、随机森林和逻辑回归等方法.同支持向量机递归特征消除法相比,在识别准确率和不平衡数据处理能力方面,两种方法性能接近,但当数据复杂度较高时,核主成分马田系统要优于支持向量机递归特征消除法,并且核主成分马田系统需要的维数较少,也不需要反复迭代. In order to solve the problem that the nonlinear data cannot be identified effectively by the traditional Mahalanobis-Taguchi system(MTS),the kernel principal component Mahalanobis-Taguchi system(KPCMTS) is proposed.The KPCMTS integrates MTS and kernel principal component analysis through the construction of kernel Mahalanobis distance.So the KPCMTS can not only identify the non-linear data,but also reduce the data noise.Experimental results demonstrate that the KPCMTS is not only superior to the traditional MTS on dimension deduction rate,accuracy,g-means,specificity,and sensitivity,but also superior to BP neural network,random forest,and logistic regression.Compared with support vector machine recursive feature elimination(SVM-RFE),the performance of both methods is similar on accuracy and g-means.However,when the data complexity is high,the KPCMTS is superior to the SVM-RFE,and the KPCMTS requires fewer dimensions and does not need repeated iteration.
作者 常志朋 陈闻鹤 王治莹 CHANG Zhipeng;CHEN Wenhe;WANG Zhiying(School of Business,Anhui University of Technology,Maanshan 243002,China;Key Laboratory of Multidisciplinary Management and Control of Complex Systems of Anhui Higher Education Institutes,Anhui University of Technology,Maanshan 243002,China;School of Management Science&Engineering,Anhui University of Technology,Maanshan 243002,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2021年第9期2447-2456,共10页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(71673001,72074002) 安徽省高校优秀青年人才支持计划重点项目(gxyqZD2017040) 安徽省普通高校重点实验室开放基金重点项目(CS2020-ZD02)。
关键词 马田系统 核主成分分析 核马氏距离 贫困识别 Mahalanobis-Taguchi system kernel principal component analysis kernel Mahalanobis distance poverty identification
  • 相关文献

参考文献2

二级参考文献34

共引文献39

同被引文献42

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部