期刊文献+

逆传输类神经网络中非对称数据优化算法研究

The Optimization Algorithm Research for Asymmetrical Data of Reverse Transmission Neural Network
下载PDF
导出
摘要 神经网络算法在数据分类与计算中对非对称数据的处理是一项亟待解决的难题。文章提出一种修改权重的逆传输类神经网络算法,通过修改自学习效率,对占有较少类的数据分配高权重来解决非对称平衡问题。仿真结果表明,与其他五种分类算法对比,本算法在不影响算法复杂度的情况下,提高了对非对称数据运算的精确性与有效性。 Neural network algorithm in data classification and calculation of asymmetric data processing is an urgent problem.Therefore,this paper proposes a modification of the weights inverse transmission neural network algorithm.By modifying the efficiency of self-learning and assigning high weights to data that occupies fewer classes,the asymmetric balance problem is solved.Compared with the other five classification algorithms by simulation data,this algorithm does not affect the algorithm complexity of the situation,improving the operation of asymmetric data accuracy and effectiveness.
作者 魏传佳 WEI Chuan-jia(Quanzhou College of Technology,Quanzhou,Fujian,China 362200)
出处 《湖南邮电职业技术学院学报》 2021年第3期22-25,58,共5页 Journal of Hunan Post and Telecommunication College
基金 福建省教育厅2020年科研项目“基于模拟退火算法的无线网络优化算法研究”(项目编号:JAT201502)。
关键词 神经网络 非对称数据 逆向传输 算法有效性 neural network asymmetric data reverse transmission effectiveness of the algorithm
  • 相关文献

参考文献1

二级参考文献17

  • 1刘志飘,王尚广,孙其博,杨放春.一种能量感知的虚拟机放置智能优化算法[J].华中科技大学学报(自然科学版),2012,40(S1):398-402. 被引量:5
  • 2Armbmst M, Fox A, Griffith R, et al. A view of cloud computing[J]. Communications of the Association for Computing Machiner- y,2010,53 (4) :50-58.
  • 3Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and emer- ging 1T platforms: Vision, hype, and reality for delivering compu- ting as the 5th utility [ J]. Future Generation Computer Systems, 2009,25 (6) :599-616.
  • 4Zhu X,Young D,Watson B J,et al. 1000 islands:an integrated ap- proach to resource management for virtualized data centers [ J ]. Cluster Computing,2009,12 ( 1 ) :45-57.
  • 5Beloglazov A,Ahawajy J, Buyya R. Energy-aware resource alloca- tion heuristics for efficient management of data centers for cloud computing [ J ]. Future Cncration Computer Systems, 2012, 28 (5) :755-768.
  • 6Liu Zhi-piao, Wang Shang-guang, Sun Qi-bo, et al. Energy-aware intelligent optimization algorithm for virtual machine replacement [ J ]. Journal of Huazhong University of Science & Technology ( Natural Science Edition), 2012,12 ( 40 ) : 398 -402.
  • 7Srikantaiah S, Kansal A, Zhao F. Energy aware consolidation for cloud computing[ C]. Proceedings of the 2008 Conference on Pow- er Aware Computing and Systems, USENIX Association,2008.
  • 8Ajiro Y, Tanaka A. Improving packing algorithms for server consol- idation[ C]. Proceedings of International Conference for the Com- putere Measurement Group (CMG) ,2007:399406.
  • 9Gupta R,Bose S K,Sundarrajan S,et al. A two stage heuristic al- gorithm for solving the server consolidation problem with item-item and bin-item incompatibility constraints [ C ]. Proceedings of the 2008 Institute of Electrical and Electronics Engineers International Conference on Services Computing (SCC'08) ,2008,2:39-46.
  • 10Agrawal S ,Bose S K, Sundarrajan S. Grouping genetic algorithm for solving the serverconsolidation problem with conflicts [ C ]. Proceed- ings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation,Association for Computing Machinery ,2009:1-8.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部