期刊文献+

基于改进小波神经网络的IGBT时间序列预测算法研究 被引量:4

Research on IGBT Sequentially Prediction Algorithm Based on Improved Wavelet Neural Network
原文传递
导出
摘要 针对IGBT老化失效问题,提出一种基于遗传算法改进的小波神经网络时间序列预测方法。在分析IGBT失效原理的基础上,利用IGBT老化数据集,选取关断瞬时"集电极-发射极"尖峰电压为失效特征参数,采用滑动时间窗法构建训练集与测试集,然后在MATLAB中搭建遗传算法改进的小波神经网络预测模型进行预测,并与传统的小波神经网络预测模型对比分析。试验结果显示,遗传算法改进的小波神经网络预测方均误差为0.017 1,方均根误差为0.130 9,平均绝对误差为0.109 6,分别比传统小波神经网络预测模型降低了0.005 7, 0.020 0, 0.064 0,有效提升了IGBT时间预测的精度。 Aiming at the aging failure of IGBT, an improved wavelet neural network sequentially prediction method based on genetic algorithm was proposed. Based on the analysis of IGBT failure mechanism, with the IGBT aging data, the instantaneous collector emitter peak voltage was selected as the failure characteristic parameter, the training set and test set were constructed by the sliding time window method, and then the wavelet neural network prediction model improved by genetic algorithm was built in MATLAB for prediction, which was compared with the traditional wavelet neural network prediction model. The experimental results show that the mean square error of the improved wavelet neural network is 0.017 1, the root square mean error is 0.130 9, and the average absolute error is 0.109 6, compared with the traditional wavelet neural network prediction model, they are reduced by 0.005 7,0.020 0 and 0.064 0 respectively, which effectively improves the accuracy of IGBT sequentially prediction.
作者 黄柯勋 吴松荣 向碧楠 徐睿 涂振威 HUANG Kexun;WU Songrong;XIANG Binan;XU Rui;TU Zhenwei(Key Laboratory of the Ministry of Education for Maglev Technology and Trains,Chengdu,Sichuan 610031,China;School of Electrical Engineering,Southwest Jiaotong University,Chengdu,Sichuan 611756,China)
出处 《机车电传动》 北大核心 2021年第5期161-166,共6页 Electric Drive for Locomotives
基金 四川省重大科技专项资助项目(20QYCX0095)。
关键词 绝缘栅双极型晶体管 失效机理 小波神经网络 遗传算法 时间序列预测 IGBT failure mechanism wavelet neural network genetic algorithm sequentially prediction
  • 相关文献

参考文献11

二级参考文献126

  • 1王立乔,黄玉水,刘兆焱木,张仲超.多电平变流器多载波PWM技术的研究[J].浙江大学学报(工学版),2005,39(7):1025-1030. 被引量:29
  • 2杨立才,贾磊,孔庆杰,林姝.粗正交小波网络及其在交通流预测中的应用[J].系统工程理论与实践,2005,25(8):124-129. 被引量:8
  • 3Tavner P, Xiang J, Spinato F. Reliability analysis for wind turbines [ J ]. Wind Energy, 2007 (10) : 1 - 18.
  • 4Wolfgang E. Examples for Failures in Power Electronics Systems [ R ]. EPE Tutorial 'Reliability of Power Elec- tronic Systems, 2007.
  • 5Held M, Jakob P, Nicoletti G,et al. Fast power cycling test of IGBT modules in traction application [C ]//Proceed- ings of International Conference on Power Electronics and Drive Systems. 1997: 425.
  • 6Ciappa M, Castellazzi A. Reliability of high-power IGBT modules for traction applications [C]//Reliability Physics Symposium. Relphy, 2007: 480-485.
  • 7Pecht M,Dasgupta A,Lall P. A failure prediction model for wire bonds[C]//Proceedings of ISHM. Baltimore, MD, 1989 : 607-613.
  • 8Syed A. Accumulated creep strain and energy density based thermal fatigue life prediction models for SnAgCu solder joints[C]//Proceedings of the 54th Electronic Com- ponents and Technology Conference. 2004:737-746.
  • 9Ciappa M. Selected failure mechanisms of modem power modules [ J ]. Microelectronics Reliability, 2002,42 : 653- 667.
  • 10Lutz J, Schlangenotto H, Scheuermann U, et al. Semi- conductor Power Devices Physics, Characteristics, Relia- bility[M]. 1st ed. Springer, 2011.

共引文献176

同被引文献39

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部