期刊文献+

Ground State Solutions for a Class of Choquard Equations Involving Doubly Critical Exponents

原文传递
导出
摘要 In this paper,we are concerned with the autonomous Choquard equation−Δu+u=(Iα∗|u|^(α/N+1))|u|^(α/N−1)u+|u|^(2∗−2)u+f(u)inR^(N),where N≥3,Iαdenotes the Riesz potential of orderα∈(0,N),the exponentsα/N+1 and 2^(∗)=2N/(N−2)are critical with respect to the Hardy-Littlewood-Sobolev inequality and Sobolev embedding,respectively.Based on the variational methods,by using the minimax principles and the Pohožaev manifold method,we prove the existence of ground state solution under some suitable assumptions on the perturbation f.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2021年第4期820-840,共21页 应用数学学报(英文版)
基金 This paper is supported by the National Natural Science Foundation of China(No.11971393).
  • 相关文献

参考文献1

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部