期刊文献+

基于经典和Riesz导数的分数阶广义Birkhoff系统的Noether定理 被引量:1

Noether’s theorems for fractional generalized Birkhoffian systems in terms of classical and Riesz derivatives
下载PDF
导出
摘要 为了研究分数阶模型下Birkhoff系统的对称性与守恒量之间的内在联系,该文提出并证明含经典和Riesz导数(包括Riesz-Riemann-Liouville导数和Riesz-Caputo导数)的分数阶广义Birkhoff系统的Noether定理。基于经典和Riesz导数的分数阶广义Pfaff-Birkhoff原理,导出相应的分数阶广义Birkhoff方程。分析系统的Noether对称性与守恒量,采用时间重新参数化方法证明分数阶Noether定理,并利用“传递公式”给出了分数阶守恒量的显形式。最后给出一个算例以说明其应用。 In order to study the internal relation between symmetry and conserved quantity of Birkhoffian systems under fractional models,this paper proposes and proves Noether’s theorems for fractional generalized Birkhoffian systems in terms of classical and Riesz derivatives(including Riesz-Riemann-Liouville derivatives and Riesz-Caputo derivatives).The fractional generalized Pfaff-Birkhoff principles based on classical and Riesz derivatives are established,and the corresponding fractional generalized Birkhoff equations are derived.The Noether symmetry and conserved quantities of the systems are analyzed,and the fractional Noether’s theorems are proved by using the time re-parameterization method,and the explicit form of fractional conserved quantity is given by using"transfer formula".Finally,an example is given to illustrate its application.
作者 周颖 张毅 Zhou Ying;Zhang Yi(School of Mathematical Science,Suzhou University of Science and Technology,Suzhou 215009,China;School of Civil Engineering,Suzhou University of Science and Technology,Suzhou 215011,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2021年第5期621-628,共8页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(11972241,11572212,11272227) 江苏省自然科学基金(BK20191454)。
关键词 广义BIRKHOFF系统 NOETHER对称性 分数阶守恒量 分数阶微积分 Riesz导数 generalized Birkhoffian system Noether symmetry fractional conserved quantity fractional calculus Riesz derivative
  • 相关文献

参考文献8

二级参考文献79

  • 1刘端.NOETHER’S THEOREM AND ITS INVERSE OF NONHOLONOMIC NONCONSERVATIVE DYNAMICAL SYSTEMS[J].Science China Mathematics,1991,34(4):419-429. 被引量:17
  • 2Riewe F.Nonconservative Lagrangian and Hamiltonian mechanics[J].Physical Review E,1996,53(2):1890-1899.
  • 3Riewe F.Mechanics with fractional derivatives[J].Physical Review E,1997,55(3):3581-3592.
  • 4Agrawal O P.Formulation of EulerLagrange equations for fractional variational problems[J].Journal of Mathematical Analysis and Applications,2002,272(1):368-379.
  • 5Atanackovi T M,Konjik S,Pilipovi S et al.Variational problems with fractional derivatives:Invariance conditions and Nther’s theorem[J].Nonlinear Analysis:Theory,Methods and Applications,2009,71(5-6):1504-1517.
  • 6Malinowska A B,Torres D F M.Introduction to the fractional calculus of variations[M].London,UK:Imperial College Press,2012.
  • 7ElNabulsi A R.A fractional approach to nonconservative Lagrangian dynamical systems[J].Fizika A,2005,14(4):289-298.
  • 8ElNabulsi A R.Necessary optimality conditions for fractional actionlike integrals of variational calculus with RiemannLiouville fractional derivatives of order(α,β)[J].Mathematical Methods in the Applied Sciences,2007,30(15):1931-1939.
  • 9ElNabulsi A R,Torres D F M.Fractional actionlike variational problems[J].Journal of Mathematical Physics,2008,49(5):053521.
  • 10ElNabulsi A R.Fractional actionlike variational problems in holonomic,nonholonomic and semiholonomic constrained and dissipative dynamical systems[J].Chaos,Solitons & Fractals,2009,42(1):52-61.

共引文献51

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部