摘要
以新建佛莞城际铁路盾构隧道与广州地铁3号线明挖段矩形隧道交叠并行工程为依托,研究地铁列车通过明挖隧道时产生的振动荷载对下部新建盾构隧道衬砌结构的动力响应,并对不同列车振动荷载下新建盾构隧道衬砌结构的动应力进行了分析。使用激振力函数法模拟地铁列车振动荷载,选取下部新建盾构隧道典型监测断面的监测点来研究在地铁列车振动荷载作用下衬砌结构的振动加速度、应力和竖向位移响应特性。结果表明:轨道结构质量越差,列车运行速度越快,车体质量越大,列车振动荷载的幅值也相应增大;在地铁列车振动荷载作用下新建盾构隧道衬砌结构存在着明显的动力影响区;新建盾构隧道衬砌管片竖向位移曲线呈“W”形,且拱顶处的竖向位移幅值最大;随着地铁列车运行速度加快,新建盾构隧道的竖向沉降亦随之增大,地铁列车运行速度每增加30 km/h,隧道衬砌结构的竖向沉降平均增加2.66%。
Based on the overlapping project of new Foshan-Dongguan Intercity Railway shield tunnel and Guangzhou metro Line 3 open-cut rectangular tunnel,the dynamic response of traffic load generated by metro train in passing through the open-cut tunnel to the lining structure of the new tunnel in the lower part is studied,and the dynamic stress of the new tunnel under different traffic loads is discussed.Then,the excitation force function method is used to simulate the metro traffic load,the response characteristics of vibration acceleration,stress and vertical displacement of the lining structure under different traffic loads are studied by taking typical monitoring sections of new shield tunnel in the lower part as the monitoring points.The results show that the worse the track quality condition,the faster the train speed and the greater car-body mass will result in the larger amplitude of the train vibration load.There is an obvious dynamic influence area under the vibration load of metro train;the vertical displacement curve of the new tunnel section forms the shape of"W",and the vertical displacement amplitude at the vault is the largest.With the acceleration of the train speed,the vertical settlement of the new tunnel also increases.Every 30 km/h increase in train operation speed will result in the settlement increase of the tunnel lining structure by 2.66%on average.
作者
加武荣
JIA Wurong(China Railway 20th Bureau Group Corporation,710021,Xi′an,China)
出处
《城市轨道交通研究》
北大核心
2021年第10期96-101,107,共7页
Urban Mass Transit
基金
国家自然科学基金项目(41172238)
中铁二十局集团有限公司技术开发课题(CR2005-佛莞-KJYF-SJ2016-001)。
关键词
城际铁路
盾构隧道
地铁列车振动荷载
动力响应
intercity railway
shield tunnel
metro train vibration load
dynamic response