摘要
Interfacial engineering has made an outstanding contribution to the development of high-efficiency perovskite solar cells(PSCs).Here,we introduce an effective interface passivation strategy via methoxysilane molecules with different terminal groups.The power conversion efficiency(PCE)has increased from 20.97%to 21.97%after introducing a 3-isocyanatopropyltrimethoxy silane(IPTMS)molecule with carbonyl group,while a trimethoxy[3-(phenylamino)propyl]silane(PAPMS)molecule containing aniline group deteriorates the photovoltaic performance as a consequence of decreased open circuit voltage.The improved performance after IPTMS treatment is ascribed to the suppression of non-radiative recombination and enhancement of carrier transportation.In addition,the devices with carbonyl group modification exhibit outstanding thermal stability,which maintain 90%of its initial PCE after 1500 h exposure.This work provides a guideline for the design of passivation molecules aiming to deliver the efficiency and thermal stability simultaneously.
基金
The authors acknowledge funding support from National Natural Science Foundation of China(21975028,22011540377)
National Science Foundation for Young Scientists No.21805010,Beijing Municipal Science and Technology Project No.Z181100005118002,and Beijing Municipal Natural Science Foundation(JQ19008).