摘要
高温合金具有优良的综合性能,是航空发动机高性能构件的首选材料。由于高温合金带材屈服强度高、壁厚超薄、回弹明显、构件成形精度难以控制,因此研究现有循环本构模型对于高温合金带材变形预测的适用性具有重要意义。基于循环剪切实验,研究了不同循环塑性本构模型(Armstrong-Frederick(A-F)模型、Yoshida-Uemori(Y-U)模型和the anisotropic nonlinear kinematic(ANK)模型)对高温合金超薄带材循环塑性变形响应的表征效果。同时,通过U形弯实验和有限元仿真结果的对比,分析了不同屈服准则(Hill48,Barlat89和YLD2000-2d)结合不同循环塑性模型对于回弹预测的影响。结果表明,采用Y-U模型对高温合金超薄板循环塑性变形行为的表征能力最好,A-F和ANK模型次之。采用Y-U模型对回弹的预测精度高于各向同性模型和A-F模型,而屈服准则对回弹预测精度的影响不大,采用基于Hill48和YLD2000-2d屈服准则的Y-U模型,回弹预测误差可以控制在5%以内。
Superalloy has excellent comprehensive properties and is the preferred material for high performance components of aeroengine.Due to its high yield strength and obvious springback,it is difficult to control the forming precision of superalloy component.Therefore,it is crucial to study the applicability of cyclic constitutive models in the deformation simulation of superalloy foils.Based on the cyclic shearing test,the characterization effects of different cyclic plastic constitutive models on the cyclic plastic deformation response of superalloy were studied.By comparing the results of U-bending test with the simulation results of finite element software,the accuracy of springback prediction of different yield criteria combined with different cyclic plastic constitutive models was analyzed.The results show that Y-U(Yoshida-Uemori)model has the best characterizing effect on the response of cyclic plastic deformation,while A-F(Armstrong-Frederick)model and ANK(the anisotropic nonlinear kinematic)model have close characterizing effect.For the prediction accuracy of springback,the fitting accuracy of Y-U model is higher than that of isotropic model and A-F model.However,the yield criterion has little influence on the prediction accuracy of springback.The prediction deviation of Y-U model based on Hill48 yield criterion and YLD-2000 yield criterion can be controlled within 5%.
作者
王彦菊
李神龙
贺炜林
沙爱学
贾崇林
孟宝
万敏
WANG Yan-ju;LI Shen-long;HE Wei-lin;SHA Ai-xue;JIA Chong-lin;MENG Bao;WAN Min(Application Evaluation Center,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China;R&D Center,AECC Changjiang Engine Company Limited,Yueyang 414000,Hunan,China;School of Mechanical Engineering&Automation,Beihang University,Beijing 100191,China;Key Laboratory of Advanced High Temperature Structural Materials,AECC Beijing Institute of Aeronautical Materials,Beijing 100095,China)
出处
《材料工程》
EI
CAS
CSCD
北大核心
2021年第11期147-155,共9页
Journal of Materials Engineering
基金
国家自然科学基金项目(51975031)
中国航发创新基金项目(ZZCX-2018-047)。