期刊文献+

基于混合策略的缎蓝园丁鸟优化算法

Satin Bowerbird Optimization Algorithm Based on Hybrid Strategy
下载PDF
导出
摘要 标准的缎蓝园丁鸟优化算法存在收敛速度慢、寻优精度低和易陷入局部最优等缺点,为此,提出了一种基于混合策略的缎蓝园丁鸟优化算法。首先,在种群初始化时,通过引入Logistic混沌映射,使初始种群能够均匀分布;其次,求偶亭位置更新时,加入了指数惯性权重,平衡了算法的全局和局部搜索能力,从而提升了算法的全局收敛速度;最后又在求偶亭位置变异时,引入了Levy飞行变异,提升了种群的多样性,使算法跳出局部最优。 The standard satin bowerbird optimization algorithm(SBO)has the problems of slow convergence speed,low precision and easy to fall into local optimization,therefore,a hybrid strategy based satin bowerbird optimization algorithm was proposed.First of all,the initial population can be uniformly distributed by introducing Logistic chaos map during the initial population initialization.Sec⁃ondly,when the bower position is updated,the exponential inertia weight is added to balance the global and local search ability of the algorithm,thus improving the global convergence speed of the algorithm;Then,Levy flight mutation is introduced when the bower posi⁃tion is changed,which improves the diversity of the population and makes the algorithm jump out of the local optimization.
作者 曹灿 高鹰 李宁 郭晓语 Cao Can;Gao Ying;Li Ning;Guo Xiaoyu(School of Computer Science and Cyber Engineering,Guangzhou University,Guangzhou 510000)
出处 《现代计算机》 2021年第29期1-9,共9页 Modern Computer
基金 北航北斗技术成果转化及产业化资金资助项目(BARI2004)。
关键词 缎蓝园丁鸟优化算法 LOGISTIC混沌映射 指数惯性权重 Levy飞行变异 satin bowerbird optimization algorithm logistic chaos map exponential inertia weight levy flight mutation
  • 相关文献

参考文献8

二级参考文献48

  • 1王文义,秦广军,王若雨.基于粒子群算法的遗传算法研究[J].计算机科学,2007,34(8):145-147. 被引量:13
  • 2KENNEDY J,EBERHART R C. Particle swarm optimization[C]// Proc of IEEE International Conference on Neural Network. Piscataway; IEEE Press, 1995: 1942-1948.
  • 3EBERHART R C,KENNEDY J. A new optimizer using particle swarm theory [ C ] //Proc of the 6th International Symposium on Micro Machine Human Science. Piscataway : IEEE Press, 1995 :39-43.
  • 4SHI Y,EBERHART R C. A modified particle swarm optimizer[ C]// Proc of IEEE Congress on Evolutionary Computation. Piscataway : IEEE Press, 1998:69-73.
  • 5SHI Yu-hui,EBERHART R C. Fuzzy adaptive particle swarm optimization [C ] //Proc of IEEE Congress on Evolutionary Computation. Piscataway ;IEEE Press, 2001.
  • 6ATAEI M, LOHMANN B, KHAKI-SEDIGH A,et al. Model based method for estimating an attractor dimension from uni/multivariate chaotic time series with application to Bremen climatic dynamics[ J]. Chaos, Solitons and Fractals, 2007,19(5) :1131-1139.
  • 7HOLLAND J H. Adaption in nature and artificial systems[M]. Michigan :The University of Michigan Press, 1975.
  • 8肖高超,王强,常棠棠,王晓霄,李立礼.一种动态惯性权重的粒子群优化算法[J].广西师范大学学报(自然科学版),2008,26(3):161-164. 被引量:3
  • 9吴秋波,王允诚,赵秋亮,吴昌荣.混沌惯性权值调整策略的粒子群优化算法[J].计算机工程与应用,2009,45(7):49-51. 被引量:19
  • 10黄美灵,赵之杰,浦立娜,吴非,赵美玲,陈浩,陈明哲.基于自适应Tent混沌搜索的粒子群优化算法[J].计算机应用,2011,31(2):485-489. 被引量:13

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部