期刊文献+

Inverse Curvature Flows of Rotation Hypersurfaces

原文传递
导出
摘要 We consider the inverse curvature flows of smooth,closed and strictly convex rotation hypersurfaces in space forms M_(κ)^(n+1)with speed function given by F^(-α),whereα∈(0,1]forκ=0,-1,α=1 forκ=1 and F is a smooth,symmetric,strictly increasing and 1-homogeneous function of the principal curvatures of the evolving hypersurfaces.We show that the curvature pinching ratio of the evolving hypersurface is controlled by its initial value,and prove the long time existence and convergence of the flows.No second derivatives conditions are required on F.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第11期1692-1708,共17页 数学学报(英文版)
基金 Supported by the National Key R and D Program of China(Grant No.2020YFA0713100) National Natural Science Foundation of China(Grant Nos.11971244 and 11871283) Natural Science Foundation of Tianjin,China(Grant No.19JCQNJC14300) Research(Grant No.KY0010000052)from University of Science and Technology of China。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部