期刊文献+

融合双注意力机制和U-Net网络的锈蚀图像分割 被引量:12

A Segmentation Method Based on Dual Attention Mechanism and U-Net for Corrosion Images
下载PDF
导出
摘要 针对传统方法难以精确分割出金属构件锈蚀区域特征的难题,构建了一种融合双注意力机制和U-Net深度学习网络的锈蚀图像区域分割模型。首先,基于U-Net网络的对称编解码架构搭建骨干网络,采用VGG16网络的预训练权重对模型参数进行初始化;其次,在下采样和上采样之间的跨层连接中融合双注意力机制使网络聚焦于局部锈蚀特征,同时在上采样中使用深度可分离卷积加速模型的运算效率;最后采用锈蚀图像数据集对该网络进行训练从而得到锈蚀图像分割模型。通过实采的金属构件锈蚀图像对所提模型进行验证,结果表明:所构建的锈蚀图像分割模型能够有效地从复杂背景图像中分割出锈蚀区域特征,锈蚀区域特征的识别准确率达到95.5%,交并比指标为81.4%;相较于传统U-Net方法,识别准确率和交并比指标分别提升了3.3%和9.2%。 A novel segmentation model based on dual attention mechanism and U-Net deep learning network for corrosion images is constructed to solve the problem that traditional methods are difficult to accurately segment the features of corrosion areas from corrosion images of metal components.Firstly,the symmetrical code-decode architecture of U-Net is used to construct the backbone network,and the pre-training weights of VGG16 network are adopted to initialize parameters for the proposed model.Secondly,the dual attention mechanism is integrated in the cross layer connection between down-sampling and up-sampling to make the network focus on local corrosion features.At the same time,the deep separable convolution is used in up-sampling to improve the computational efficiency.Finally,the network is trained by using the corrosion image data set to obtain the corrosion image segmentation model.The effectiveness and practicability of the proposed model are verified by the actual corrosion images of metal components.Experimental results show that the proposed segmentation model effectively segments the corrosion area features from the complex background images.The recognition accuracy of corrosion area features reaches 95.5%,and the index of the intersection over union is 81.4%.Compared with the traditional U-Net model,the accuracy and the index of intersection over union of the proposed model are improved by 3.3%and 9.2%,respectively.
作者 陈法法 成孟腾 杨蕴鹏 陈保家 肖文荣 肖能齐 CHEN Fafa;CHENG Mengteng;YANG Yunpeng;CHEN Baojia;XIAO Wenrong;XIAO Nengqi(Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2021年第12期119-128,共10页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(51975324) 宜昌市自然科学研究资助项目(A21-3-002) 三峡大学硕士培优基金资助项目(2021SSPY036)。
关键词 图像分割 锈蚀 U-Net网络 注意力机制 深度神经网络 image segmentation corrosion U-Net network dual attention mechanism deep neural networks
  • 相关文献

参考文献12

二级参考文献59

共引文献210

同被引文献134

引证文献12

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部