期刊文献+

雾霾天气下光源目标检测算法 被引量:2

Algorithm for detecting drone light source target in foggy weather
原文传递
导出
摘要 针对雾霾天气下的光源运动目标清晰度低、轮廓模糊的问题,以火炮射击空中光源目标测量火炮跳角为研究背景,提出基于边窗均值滤波的雾霾天气下目标检测算法。首先在雾天退化模型基础上,使用边窗均值滤波算法对初始透射率进行改进,保留图像的轮廓边缘,然后通过平均修补块方法求出大气光值并复原出原始图像。最后通过奇异值分解的方法,判断光源运动目标和天空背景的相近程度,动态改变高斯混合模型的判别阈值。通过不同去雾算法的主观和客观分析以及光源微小运动目标的检测分析,所设计算法的目标检测清晰度更好。实验结果表明,该算法耗时较少,平均检测精度可达90%,能够准确、高效地检测出光源运动目标。 In order to solve the problems of low definition and fuzzy contour of moving target in haze weather,a target detection algorithm based on edge window mean filter is proposed in this paper.Firstly,the edge window means filtering algorithm based on the fog degradation model is used to improve the initial transmittance and preserve the contour edge of the image.Then,the atmospheric light value is calculated by the average patch and the original image is restored.Finally,singular value decomposition is used to judge the similarity between moving object and sky background,and the threshold of GMM is changed dynamically.Through the subjective and objective analysis of different defogging algorithms and the detection analysis of light source micro moving target,the target detection clarity of the designed algorithm is better.The experimental results show that the algorithm consumes less time,and the average detection accuracy can reach 90%.It can detect the moving object of light source accurately and efficiently.
作者 谢艳丽 姜志 王军 吴云鹏 XIE Yanli;JIANG Zhi;WANG Jun;WU Yunpeng(Suzhou University of Science and Technology,Suzhou Jiangsu 215009,China;Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China;Center of Arms Experiment of Baicheng,Baicheng Jilin 137001,China;Science and Technology on Near-Surface Detection Laboratory,Wuxi Jiangsu 214035,China)
出处 《激光杂志》 CAS 北大核心 2021年第11期46-52,共7页 Laser Journal
基金 “十三五”江苏省重点学科项目(No.20168765)、江苏省研究生科研创新项目(No.KYCX17_2060)、江苏省研究生工作站项目、近地面探测技术重点实验室基金(No.TCGZ2018A005)。
关键词 图像去雾 边窗均值滤波 透射率优化 平均修补块 奇异值分解 光源目标检测 image dehazing side window mean filter transmittance optimization average patch SVD light source target detection
  • 相关文献

参考文献7

二级参考文献57

  • 1王萍,张春,罗颖昕.一种雾天图像低对比度增强的快速算法[J].计算机应用,2006,26(1):152-153. 被引量:62
  • 2Gonzalez R C,Woods R E.Digital Image Processing[M].Upper Saddle River,NJ:Prentice Hall,2006.
  • 3Kim T K,Paik J K,Kang B S.Contrast enhancement system using spatially adaptive histogram equalization with temporal filtering[J].IEEE Transactions on Consumer Electronics,1998,44(1):82-87.
  • 4Iwanami T,Goto T,Hirano S,et al.An adaptive contrast enhancement using regional dynamic histogram equalization[C].IEEE International Conference on Consumer Electronics,2012:719-722.
  • 5Ooi C H,Isa N A M.Quadrants dynamic histogram equalization for contrast enhancement[J].IEEE Transactions on Consumer Electronics,2010,56(4):2552-2559.
  • 6Chen S D,Ramli A R.Minimum mean brightness error bi-histogram equalization in contrast enhancement[J].IEEE Transactions on Consumer Electronics,2003,49(4):1310-1319.
  • 7Figueiredo M,Jain A.Unsupervised learning of finite mixture models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):381-396.
  • 8Menotti D,Najman L,Facon J,et al.Multi-histogram equalization methods for contrast enhancement and brightness preserving[J].IEEE Transactions on Consumer Electronics,2007,53(3):1186-1194.
  • 9朱瑜辉,方滨,张会清.基于物理模型的雾霾天道路图像清晰化[J].计算机应用,2010,30(A01):156-158. 被引量:5
  • 10黄晓军,来彦栋,陈奋.快速去除单幅图像雾霾的算法[J].计算机应用,2010,30(11):3028-3031. 被引量:16

共引文献67

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部