期刊文献+

基于区块链和联邦学习的边缘计算隐私保护方法 被引量:30

Edge computing privacy protection method based on blockchain and federated learning
下载PDF
导出
摘要 针对边缘计算的数据隐私性、计算结果正确性和数据处理过程可审计性等需求,提出了一种基于区块链和联邦学习的边缘计算隐私保护方法,不需要可信环境和特殊硬件设施即可在网络边缘处联合多设备实现安全可靠的协同训练。利用区块链赋予边缘计算防篡改和抗单点故障攻击等特性,并在共识协议中融入梯度验证和激励机制,鼓励更多的本地设备诚实地向联邦学习贡献算力和数据。对于联邦学习共享模型参数导致的潜在隐私泄露问题,设计自适应差分隐私机制保护参数隐私的同时减小噪声对模型准确性的影响,并通过时刻统计精确追踪训练过程中的隐私损失。实验结果表明,所提方法能够抵抗30%的中毒攻击,并且能以较高的模型准确率实现隐私保护,适用于对安全性和准确性要求较高的边缘计算场景。 Aiming at the needs of edge computing for data privacy,the correctness of calculation results and the auditability of data processing,a privacy protection method for edge computing based on blockchain and federated learning was proposed,which can realize collaborative training with multiple devices at the edge of the network without a trusted environment and special hardware facilities.The blockchain was used to endow the edge computing with features such as tamper-proof and resistance to single-point-of-failure attacks,and the gradient verification and incentive mechanism were incorporated into the consensus protocol to encourage more local devices to honestly contribute computing power and data to the federated learning.For the potential privacy leakage problems caused by sharing model parameters,an adaptive differential privacy mechanism was designed to protect parameter privacy while reducing the impact of noise on the model accuracy,and moments accountant was used to accurately track the privacy loss during the training process.Experimental results show that the proposed method can resist 30%of poisoning attacks,and can achieve privacy protection with high model accuracy,and is suitable for edge computing scenarios that require high level of security and accuracy.
作者 方晨 郭渊博 王一丰 胡永进 马佳利 张晗 胡阳阳 FANG Chen;GUO Yuanbo;WANG Yifeng;HU Yongjin;MA Jiali;ZHANG Han;HU Yangyang(Department of Cryptogram Engineering,Information Engineering University,Zhengzhou 450001,China;School of Cyberspace Security,Zhengzhou University,Zhengzhou 450003,China;University of California,Riverside,Riverside CA92521,USA)
出处 《通信学报》 EI CSCD 北大核心 2021年第11期28-40,共13页 Journal on Communications
基金 国家自然科学基金资助项目(No.61501515,No.61601515)。
关键词 联邦学习 边缘计算 区块链 中毒攻击 隐私保护 federated learning edge computing blockchain poisoning attack privacy preservation
  • 相关文献

参考文献2

二级参考文献7

共引文献333

同被引文献274

引证文献30

二级引证文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部