期刊文献+

光学太赫兹辐射源及其在脑创伤检测中的应用 被引量:7

Optical Terahertz Radiation Sources and Terahertz Application in Traumatic Brain Injury
原文传递
导出
摘要 太赫兹波因其具有独特的优势,在生物医学检测、安全检查、通信和雷达等多种领域具有重要的应用前景,而太赫兹辐射源是太赫兹技术的应用基础,近年来得到了快速发展。基于光学非线性频率变换技术的太赫兹参量辐射源和差频辐射源可以产生调谐范围宽、输出能量高和单色性好的太赫兹波。本文综述了基于受激电磁耦子散射技术的太赫兹参量辐射源以及基于非线性光学差频技术的太赫兹差频辐射源的研究进展,着重叙述了当前太赫兹参量辐射源和差频辐射源在输出频率范围拓展、能量提高和快速调谐等方面的研究进展,以及太赫兹技术在脑创伤检测中的应用研究进展,并分析了光学太赫兹辐射源及其在脑创伤检测应用的关键技术问题以及发展趋势。 Significance Terahertz wave generation technology has rapidly become efficient recently and is the key,foundational technology to realize a wide application of terahertz band in comprehensive research.The terahertz band,located in the transition region from traditional electronics to photonics,has low energy,water sensitivity,special penetrability and many other unique properties.With respect to these characteristics,terahertz wave has widely used applications in biomedical diagnosis,safety inspection,nondestructive testing,terahertz communication and radar.Terahertz parametric and difference frequency radiation sources,based on optical nonlinear frequency conversion technology,can generate wideband tunable,monochromatic terahertz waves.Terahertz parametric and difference frequency radiation sources also have the advantage of compact structure and utilization at room temperatures(18-30℃).With the improvement of laser technology and crystal growth technology,terahertz parametric radiation source and terahertz difference frequency radiation sources are developing rapidly to expand frequency tuning range,improve output energy,narrow terahertz wave linewidth resulting in a series of new technologies,such as ring cavity,circulating pump,and pulse-seeded injection.Progress Compared with congruent MgO-doped lithium niobite(MgO∶CLN)crystal,the upper tuning frequency limit of terahertz parametric oscillator based on near-stoichiometric MgO-doped lithium niobite(MgO∶SLN)crystal can be increased from 3 THz to 4.64 THz(Fig.4).Terahertz parametric oscillator based on KTiOPO4(KTP)and KTiOAsO4(KTA)crystal can further improve the frequency tuning upper limit of terahertz wave;even though there are gaps in the frequency tuning range,continuous tuning cannot be achieved(Fig.6).Terahertz parametric oscillator based on ring cavity can broaden the frequency tuning range of terahertz wave and improve the output energy(Fig.7).Terahertz parametric oscillator based on pump recycling technology can improve the pump efficiency and greatly increase the output energy of terahertz wave in the entire frequency tuning range(Fig.9).Comparing the pump source with ns pulse width,the terahertz parametric radiation source based on sub-ns pump laser can not only improve the pump peak energy but also effectively suppress the stimulated Brillouin scattering in nonlinear crystal,considerably improving the output energy.Pulse-seeded injection technology not only further improves the frequency tuning upper limit of the terahertz parametric oscillator based on LiNbO3 crystal to 5.15 THz but also addresses the disadvantage of low output energy in high frequency band to maintain high output energy in a wider range(Fig.11).Based on dual KTP-optical parametric oscillation(KTP-OPO)technology,terahertz difference frequency radiation source based on inorganic crystal such as GaSe can achieve high repetition rate terahertz wave output(Fig.12),which can be used in near-field microscopy,rapid scanning THz spectroscopy and other occasions,requiring high repetition rate of terahertz wave.Terahertz difference frequency radiation source based on 4’-dimethylamino-N-methyl-4-stilbazolium tosylate(DAST),4-N,N-dimethylamino-4’-N’-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate(DSTMS),N-benzyl-2-methyl-4-nitroaniline(BNA),and other organic crystals can achieve ultra-wideband terahertz wave output in the range of 1 THz to 30 THz.Owing to the characteristics of terahertz wave,i.e.,low energy,water sensitivity,and fingerprint spectrum,terahertz technology has a good application potential in the field of traumatic brain injury detection.For example,multi depth slice terahertz imaging technology can accurately identify the severity of traumatic brain injury(Fig.15).Terahertz imaging technology based on machine learning can automatically recognize and classify different degrees of traumatic brain injury samples.Conclusions and Prospects Terahertz parametric and difference frequency sources based on optical nonlinear frequency conversion technology can generate terahertz wave with high output energy,wide frequency tuning range,and narrow linewidth.With the improvement of terahertz radiation source performance,terahertz technology will have greater applications in biomedical detection,nondestructive detection,safety inspection,terahertz radar,and so on.
作者 徐德刚 王与烨 胡常灏 闫超 陈锴 王泽龙 聂港 张嘉昕 姚建铨 Xu Degang;Wang Yuye;Hu Changhao;Yan Chao;Chen Kai;Wang Zelong;Nie Gang;Zhang Jiaxin;Yao Jianquan(Institute of Laser and Optoelectronics,School of Precision Instruments and Optoelectronics Engineering,Tianjin University,Tianjin 300072,China;Key Laboratory of Optoelectronic Information Technology(Ministry of Education),Tianjin University,Tianjin 300072,China;Micro Optical Electronic Mechanical System Technology Laboratory,Tianjin University,Tianjin 300072,China)
出处 《中国激光》 EI CAS CSCD 北大核心 2021年第19期137-150,共14页 Chinese Journal of Lasers
基金 国家自然科学基金(U1837202,61775160,61771332,62011540006)。
关键词 非线性光学 太赫兹波 受激电磁耦子散射 太赫兹参量振荡 差频 脑创伤 nonlinear optics terahertz wave stimulated polariton scattering terahertz parametric oscillation difference frequency traumatic brain injury
  • 相关文献

参考文献6

二级参考文献40

  • 1韩元,周燕,阿布来提,赵国忠,张存林.太赫兹技术在安全领域中的应用[J].现代科学仪器,2006,23(2):45-47. 被引量:15
  • 2王迎新,陈志强,赵自然,张岩,张丽.基于太赫兹时域谱分析的爆炸物检测方法研究[J].光学技术,2007,33(4):587-590. 被引量:11
  • 3B.T.Matthias and J.P.Remeika,et al.Radioactive Lanthanum 140[J].Phys.Rev,1949,76(12),1886-1888.
  • 4E.G.Spencer,P.V.Lenzo,and K.Nassau.Ferroelectric Behacior of Lithium Niobate[J].Appl.Phys.Let.,1965,7(3),67 -69.
  • 5G.D.Boyd,R.C.Miller,K.Nassau,et al.LiNbO3:An Efficient Phase Matchable Nonlinear Optical MaterialAppl[J].Phys.Let.,1964,5(11),234-236.
  • 6P.V.Lenzo,E.G.Spencer,and K.Nassau.Electro-optic coefficients in single-domain ferroelectric lithium niobate[J].J.Opt.Soc.Am.1966,56(5),633 -635.
  • 7A.Brenier,Numerical investigation of the CW end-pumped NYAB and LiNbO3:MgO:Nd self-doubling lasers[J].Opt.Commun.1996,129(1-2),57-61.
  • 8V.Bermudez,P.S.Dutta,M.D.Serrano,and E.Dieguez.On the single domain nature of stoichiometric LiNbO3 grown from melts containing K2O[J].Appl.Phys.Lett.,1997,70(6),729 -731.
  • 9F.Abdi,M.Aillerie,P.Bourson,et al.Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition[J].J.Appl.Phys.,1998,84(4),2251 -2254.
  • 10K.Kitamura,J.K.Yamamoto,et al.Stoichiometric LiNbO3 Single Crystal Grown by Double Crucible Czochralski Method Using Automatic Powder Supply System[J].J.Cryst.Growth,1992,116,327 -329.

共引文献83

同被引文献72

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部