期刊文献+

Well-dispersed NiCoS_(2) nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst 被引量:8

原文传递
导出
摘要 Developing efficient oxygen evolution reaction(OER) electrocatalysts such as transition metal sulfides(TMSs) is of great importance to advance renewable hydrogen fuel toward further practical applications.Herein,NiCoS_(2) nanoparticles well decorated on double-sided N-doped reduced graphene oxide sheets(NiCoS_(2)/rGO) are prepared from an Al-containing ternary NiCoAl-layered double hydroxide precursor(NiCoAl-LDH) grown on GO support as an OER electrocatalyst.The Al-confinementassisted sulfurization,followed by selective acid treatment,endows the resulting NiCoS_(2)/rGO composite with the advantages:well-dispersed NiCoS_(2) nanoparticles,dualsided rGO support,as well as a large specific surface area of 119.4 m^(2)·g^(-1) and meso-/macroporous size distribution.The NiCoS_(2)/rGO electrocatalyst exhibits an overpotential of 273 mV at 10 mA·cm^(-2) and a good stability of 24 h,which outperform those of the counterparts of NiS_(2)/rGO and CoS_(2)/rGO.The results of electrochemical active surface area and electrochemical impedance spectra experimentally provide convincing rationales of the information of active sites and good conductivity,both underpin the enhanced electrocatalytic performances.
出处 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3156-3165,共10页 稀有金属(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.U1607128)。
  • 相关文献

参考文献6

二级参考文献25

共引文献42

同被引文献48

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部