期刊文献+

基于健康指数的风电机组高速轴轴承状态评估与预测 被引量:7

STATE ACCESSMENT AND PREDICTION OF WIND TURBINE HIGH SPEED SHAFT BEARING BASED ON HEALTH INDEX
原文传递
导出
摘要 为评估风电机组高速轴轴承的健康状况并预测其后续状态,构建能反映轴承退化过程的健康指数(HI)曲线作为健康状态预测的基础,提出一种核主元分析(KPCA)与双向长短期记忆(Bi-LSTM)网络相结合的方法。首先利用单调性及核主元分析构建高速轴轴承的HI曲线,其次在已构建的HI曲线基础上利用Bi-LSTM网络对高速轴轴承的健康状态进行预测。通过高速轴轴承全寿命周期试验,验证了该方法构建的HI曲线单调性好,能对高速轴轴承进行较为准确的健康评估和状态预测。 In order to evaluate the health condition of the wind turbine high-speed shaft bearings and predict its subsequent state,a health index(HI)curve reflecting the degradation process of the bearing was constructed as the basis of health condition prediction,A method based on Kernel Principal Component Analysis(KPCA)and Bidirectional Long Shot Term Memory(Bi-LSTM)network model was proposed.Firstly,the HI curve of high-speed shaft bearing was constructed by using monotonicity analysis and KPCA,Then the health state of high-speed shaft bearing was predicted by using Bi-LSTM network on the basis of the constructed HI curve.The HI curve constructed by this method is proved to have good monotonicity and can be used for more accurate health assessment and state prediction of high-speed shaft bearings.
作者 李振恩 张新燕 胡威 谢丽蓉 Li Zhen’en;Zhang Xinyan;Hu Wei;Xie Lirong(College of Electrical Engineering,Xinjiang University,Urumqi 830047,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第10期290-297,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(51667018)。
关键词 风电机组 轴承 预测 评估 健康指数 核主元分析 双向长短期记忆 wind turbines bearings prediction assessment health index kernel principal component analysis(KPCA) bidirectional long shot term memory(Bi-LSTM)
  • 相关文献

参考文献7

二级参考文献68

  • 1顾煜炯,董玉亮,杨昆.基于模糊评判和RCM分析的发电设备状态综合评价[J].中国电机工程学报,2004,24(6):189-194. 被引量:67
  • 2杨胜,李莉,胡福乔,施鹏飞.基于决策树的城市短时交通流预测[J].计算机工程,2005,31(8):35-36. 被引量:9
  • 3骆思佳,廖瑞金,王有元,刘玲.带变权的电力变压器状态模糊综合评判[J].高电压技术,2007,33(8):106-110. 被引量:60
  • 4奚立峰,黄润青,李兴林,刘中鸿,李杰.基于神经网络的球轴承剩余寿命预测[J].机械工程学报,2007,43(10):137-143. 被引量:56
  • 5SHAO Y,NEZU K. Prognosis of remaining bearing life using neural networks[J].Journal of Systems and Control Engineering,2000,(13):217-230.
  • 6GEBRAEEL N,LAWLEY M,LIU R. Residual life predictions from vibration-based degradation signals:A neral network approach[J].IEEE Tran on Induxttrial Electronics,2004,(03):694-700.
  • 7HUANG Runqing,XI Lifeng,LI Xinglin. Residual life predictions for ball bearings based on self-organizing map and back propagation neural network methods[J].Mechanical Systems and Signal Processing,2007.193-207.
  • 8PAN Yuna,CHEN Jin,LI Xinglin. Spectral entropy:A complementary index for rolling element bearing performance degradation assessment[J].Journal of Mechanical Engineering System,2009.1223-1231.
  • 9ZARETSKY E V,POPLAWSKI J V,PETERS S M. Comparision of life theories for rolling element bearing[J].Tribology Transactions,1996,(02):237-248.
  • 10LI Y,BILLIGTON S,ZHANG C. Adaptive prognostics for rolling element bearing condition[J].Mechanical Systems and Signal Processing,1999,(01):103-113.

共引文献261

同被引文献85

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部