期刊文献+

基于时变阻尼运动的社交网络信息传播动力学分析 被引量:2

Social network information propagation dynamic analysis based on time-varying damping motion
原文传递
导出
摘要 针对目前社交网络上信息传播动力学的研究成果中,未能从社会物理学层面揭示微观个体上的随机性和无序性与宏观群体上的可知性和可控性之间的关系问题,本文提出了一种基于时变阻尼运动的信息传播动力学模型(time-varying damped motion,TVDM).首先,深入分析社交网络中信息传播现象,从时间、空间、主体(行为人)、客体(信息)4个维度提取关键特征;然后,从带阻尼的简谐运动视角、内外力系合力作用视角、信息能量转化视角、时变系统与信号变换视角,揭示了社交网络上信息传播的物理学本质规则和作用机制;最后,通过数值模拟实验验证了网络上个体行为服从统计规律性.实验结果表明:提出的时变阻尼运动信息传播动力学模型精度为91%,构建的社交网络信息传播动力学模型TVDM是合理有效的. According to the current research achievements in online social network(OSN)information propagation dynamics,the relationship between the randomness and disorder of micro individuals and the knowability and controllability of macro group is not revealed through the social physics method.This paper proposes a novel information propagation dynamics model based on time-varying damping motion(TVDM).Firstly,the phenomenon of information propagation in OSN is analyzed in depth,and key features are extracted.Then,from the perspectives of simple harmonic motion with damping,combined forces of internal and external force systems,information energy transformation,time-varying system and signal transformation,this paper reveals the physical governing equations and action mechanism of information propagation.Finally,the numerical simulation experiment verifies that the individual behavior on the network obeys the statistical regularity.The empirical comparison experiment verifies that the model simulation results are highly consistent with the real event statistical data.Experimental results show that the precision of the proposed TVDM model is about 91%,the novel model is reasonable and effective.
作者 刘小洋 何道兵 刘超 张宜浩 Xiaoyang LIU;Daobing HE;Chao LIU;Yihao ZHANG(School of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China;School of Artificial Intelligence,Chongqing University of Technology,Chongqing 401135,China;School of Computing,National University of Singapore,Singapore 119077,Singapore)
出处 《中国科学:信息科学》 CSCD 北大核心 2021年第11期1867-1884,共18页 Scientia Sinica(Informationis)
基金 国家社科基金(批准号:17XXW004) 国家自然科学基金(批准号:61702063)资助项目。
关键词 社交网络 动力学 信息能量 阻尼运动 时变系统 social network dynamics information energy damping motion time-varying system
  • 相关文献

参考文献5

二级参考文献25

  • 1Damon Centola. The Spread of Behavior in an Online Social Network Experiment[J].2010.329) : 1194-1197.
  • 2Dietrich Stauffer. Opinion Dynamics and Sociophysics [A]. Encyclopedia of Complexity and Systems Science[M]. Germa-ny :Springer, 2009 , Part 15 ; 6380-6388. e-print arXiv :0705. 0891 [physics, soc-ph].
  • 3Clippinger J H. A Crowd of One:the Future of Individual Identity [M]. New York:Baker Books,2007.
  • 4Pluchino A,Latora V,Rapisarda A. Changing Opinionin a Changing World:a New Persepective in Socio-physics [J]. In-ternational Journal of Modern Physics C,2013,16(04) : 515-531.
  • 5Ball P. Critical Mass : How one Thing Leads to Another [M]. Heinemann: Portsmouth, NH,2004.
  • 6李翔,王林.复杂网络病毒传播动力学与控制--一个体异质与移动属性的影响[C].2010年中国物理年会秋季会议.天津,2010:17-19.
  • 7Li X,Cao L,Cao G. Epidemic Prevalence on Random Mobile Dynamical Networks : Individual Heterogeneity and Correla-tion[J]. European Physical Journal B ,2010,75 :319-326.
  • 8Yang H X, Wu Z X,Zhou C S,et al. Effects of Social Diversity on the Emergence of Global Consensus in Opinion Dy-namics[J], Phys Rev E ,2009 ,80(4) : 046108.
  • 9Liu Z H. Effect of Mobility in Partially Occupied Complex Networks[J]. Phys Rev E , 2010,81 (1) : 016110.
  • 10牛文元.基于社会物理学的社会和谐方程[J].中国科学院院刊,2008,23(4):343-347. 被引量:18

共引文献34

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部