期刊文献+

WSN中利用改进FOA-GRNN和迭代Cubature卡尔曼滤波的实时目标跟踪方法 被引量:1

A REAL-TIME TARGET TRACKING METHOD USING IMPROVED FOA-GRNN AND ITERATIVE CUBATURE KALMAN FILTERING IN WSN
下载PDF
导出
摘要 针对传统无线传感器网络(Wireless Sensor Network,WSN)对运动目标的定位和跟踪容易产生明显误差的问题,提出利用改进FOA-GRNN和迭代Cubature卡尔曼滤波的实时目标跟踪方法。基于改进FOA-GRNN法,利用从锚点接收到的运动目标的模拟(RSSI)值和相应的实际目标二维位置对GRNN进行训练,从而获得单个目标在二维运动时的准确初始位置;利用迭代Cubature卡尔曼滤波法对实时目标进行精准定位和测距,获得实时目标的准确定位和跟踪信息;将改进的FOA-GRNN法和迭代Cubature卡尔曼滤波法相结合用于WSN中实时目标跟踪和定位,在提高初始位置精度的同时,还提高了实时目标定位和跟踪信息的准确度。实验结果表明,相比其他几种较新的方法,该方法改善了WSN中实时目标的跟踪性能,降低了误差,提高了跟踪精度。 Aiming at the problem that the traditional wireless sensor network(WSN)produces obvious errors in the positioning and tracking of moving targets,this paper proposes a real-time target tracking method by using improved fly optimization algorithm general regression neural network(FOA-GRNN)and iterative Cubature Kalman filtering.Based on the improved FOA-GRNN method,GRNN was trained by using the simulated value(RSSI)of the moving target received from the anchor and using the corresponding two-dimensional position of the actual target,so as to obtain the accurate initial position of a single target in two-dimensional motion.We adopted iterative Cubature Kalman filtering method for accurate positioning and ranging of real-time targets,so as to get accurate positioning and tracking information of real-time targets.The improved FOA-GRNN method and iterative Cubature Kalman filtering method were combined for real-time target tracking and positioning in WSN,which ensured the initial position accuracy,and improved the accuracy of real-time target positioning and tracking information as well.The experiments show that compared with existing methods,the proposed method enhances the tracking performance of real-time targets in WSN,reduces errors and improves tracking accuracy.
作者 罗宏等 蓝耿 聂良刚 粟光旺 伍一坤 Luo Hongdeng;Lan Geng;Nie Lianggang;Su Guangwang;Wu Yikun(Guangxi University of Finance and Economics,Nanning 530003,Guangxi,China;Guangxi University,Nanning 530001,Guangxi,China)
出处 《计算机应用与软件》 北大核心 2021年第12期135-141,219,共8页 Computer Applications and Software
基金 广西科技厅重点研发计划项目(2017AB18048) 广西自然科学基金联合资助培育项目(2018GXNSFAA294010)。
关键词 卡尔曼滤波 无线传感器网络 改进的FOA-GRNN 迭代Cubature 实时目标跟踪 Kalman filter Wireless sensor network(WSN) Improved fly optimization algorithm general regression neural network(FOA-GRNN) Iterative Cubature Real-time target tracking
  • 相关文献

参考文献5

二级参考文献28

共引文献47

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部