期刊文献+

一类时空分数阶mCH方程的双曲函数形式精确解

New Exact Solutions of the Time-space Fractional mCH Equation Based on Hyperbolic Form
原文传递
导出
摘要 借助一致分数阶导数和行波变换,采用推广的Kudryashov方法对一类时空分数阶mCH方程进行了探讨,得到了方程的若干双曲函数形式精确解.同时,借助Matlab软件,对某些典型精确解进行计算机仿真,获得了典型精确解在指定参数下对应的三维图,让精确解更加直观.结果表明推广的Kudryashov方法对于求解分数阶方程有普适性. With the help of conformable fractional derivative and traveling wave transformation,a kind of nonlinear time-fractional mCH equation is studied by the generalized Kudryashov method,and the solutions of some hyperbolic functions are obtained.Later,some typical exact solutions are simulated by Matlab software,and the corresponding threedimensional graphs of the typical exact solutions under the specified parameters are obtained,which makes the exact solutions more intuitionistic.The results show that the generalized Kudryashov method is universal for solving fractional order equations.
作者 陈兆蕙 阳平华 邓胜忠 CHEN Zhao-hui;YANG Ping-hua;DENG Sheng-zhong(School of Computer Engineering,Guangzhou City Institute of Technology,Guangzhou 510800,China;Dongguan Protronic Electronics Limited Compony,Dongguan 523000,China)
出处 《数学的实践与认识》 2021年第22期204-211,共8页 Mathematics in Practice and Theory
基金 广州市科技局基础及应用基础项目(202002030228)。
关键词 时空分数阶mCH方程 修正的Kudryashov方法 一致分数阶导数 精确解 time-fractional mCH equation the generalized Kudryashov method conformable fractional derivative exact solutions
  • 相关文献

参考文献7

二级参考文献30

  • 1Parkes [J. A Note on Travelling-Wave Solutions to Lax's Seventh-Order KdV Equation[J]. Appl Math Cornput , 2009, 215(2): 864-865.
  • 2Wazwaz A M. New Travelling Wave Solutions of Different Physical Structures to Generalized BBM Equation[J]. Phys Lett A, 2006, 355(4/5): 358-362.
  • 3Lax PD. Integrals of Nonlinear Equations of Evolution and Solitary Waves[J]. Commun Pure Appl Math, 1968, 21: 467-490.
  • 4LOU Sen-yue , HUANG Guo-xiang, RUAN Hang-yu. Exact Solitary Waves in a Convecting Fluid[J].J Phys A: Math Gen, 1991, 24(11): L587-L590.
  • 5Wazwaz A M, Helal M A. Nonlinear Variants of the BBM Equation with Compact and Noncompact Physical Structures[J]. Chaos, Solitons &. Fractals, 2005, 26(3): 767-776.
  • 6Kudryashow N A. Meromorphic Solutions of Nonlinear Ordinary Differential Equations[J]. Communin Nonlinear Sci Numer Simul, 2010, 15(10): 2778-2790.
  • 7Yusufoglu E, Bekir A. Symbolic Computation and New Families of Exact Travelling Solutions for the Kawahara and Modified Kawahara Equations[J]. Comput &. Math Appl , 2008, 55(8): 1113-1121.
  • 8Asian I. Exact and Explicit Solutions to Some Nonlinear Evolution Equations by Utilizing the CG' /G)-Expansion Method[J]. Appl Math Cornput, 2009, 215(2): 857-863.
  • 9Biswas A, Konar S, Zerrad E. Soliton Perturbation Theory for the General Modified Degasperis-Procesi Camasa-Holm Equation[J]. Inte[J Mod Math, 2007, 2(1): 35-40.
  • 10Bridges TJ, Derks G. Linear Instability of Solitary Wave Solutions of the Kawahara Equation and Its Generalizations[J]. SIAMJ Math Anal, 2002, 33(6): 1356-1378.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部