期刊文献+

A neural network-based commutation optimization strategy and drive system design for brushless DC motor 被引量:1

下载PDF
导出
摘要 An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.
作者 Liu Yuxiang Yao Zhaolin Yuan Fang Liu Ming Li Xiang Zhang Xu 刘宇翔;Yao Zhaolin;Yuan Fang;Liu Ming;Li Xiang;Zhang Xu(State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,P.R.China)
出处 《High Technology Letters》 EI CAS 2021年第4期448-453,共6页 高技术通讯(英文版)
基金 the National Key Research and Development Program(No.2017YFB0406204,2016YFC0105604) Beijing Science and Technology Projects(No.Z181100003818002) Science and Technology Service Network Initiative(No.FJ-STS-QYZX-099,KFJ-STS-ZDTP-069).
  • 相关文献

参考文献1

二级参考文献1

共引文献2

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部