期刊文献+

基于运动信息先验的变电站鸟类检测 被引量:1

Bird detection in substation based on motion information prior
下载PDF
导出
摘要 由于传统的驱鸟方法效果较差,通过研究鸟类检测,可以配合驱鸟设备实现高效的智能化驱鸟,提高驱鸟率。针对变电站的复杂环境,文中采用KNN背景差分法获取运动目标,并将运动目标进行分割和重组,提取图像中的感兴趣区域,最后利用优化的YOLOv4网络对感兴趣区域进行鸟类检测。实验结果表明,所提方法可以较为准确高效地检测变电站中运动的鸟类目标,具有较强的实用性。 Due to the poor performance of traditional bird driving methods,the use of bird driving equipment can realize the efficient intelligent bird driving after the study of bird detection.Based on the complex environment of the substation,this paper uses KNN background difference method to extract moving targets,and then divides and reorganizes them to form regions of interest.Finally,the optimized YOLOv4 network is used to detect birds in the region of interest.Experiment results show that the proposed method can accurately detect birds in substations and has strong practicability.
作者 苏慧民 刘泽 朱文明 章倩 周清楷 王庆华 SU Hui-min;LIU Ze;ZHU Wen-ming;ZHANG Qian;ZHOU Qing-kai;WANG Qing-hua(State Grid Jiangsu Electric Power Co.,Ltd.,Changzhou Power Supply Branch,Changzhou 213000,Jiangsu Province,China;College of Internet of Things Engineering,Hohai University,Changzhou 213022,Jiangsu Province,China;Changzhou Zhongneng Power Technology Co.,Ltd.,Changzhou 213000,Jiangsu Province,China)
出处 《信息技术》 2021年第12期43-48,54,共7页 Information Technology
基金 国网常州供电公司科技项目(SGTYHT/19-JS-218) 江苏省重点研发计划(BE2020092)。
关键词 运动目标检测 KNN建模 YOLOv4 鸟类目标 变电站 moving target KNN modeling YOLOv4 bird target transformer substation
  • 相关文献

参考文献9

二级参考文献61

  • 1易辉,熊幼京.1000kV交流特高压输电线路运行特性分析[J].电网技术,2006,30(15):1-7. 被引量:85
  • 2杨挺,蔡柏林.鸟害引起输电线路地线断线的原因分析及对策[J].广东电力,2006,19(12):72-75. 被引量:18
  • 3杨广林,孔令富.基于图像分块的背景模型构建方法[J].机器人,2007,29(1):29-34. 被引量:12
  • 4Sehwarz L A, Mkhitaryan A, Mateus D, et al. Human skeleton tracking from depth data using geodesic distances and optical flow [ J ]. Image and Vision Computing, 2012, 30(3) : 217 -226.
  • 5Jun -Qin W. An Adaptive Frame Difference Method for Human Tracking [ J ]. AISS : Ad- vances in Information Sciences and Service Sciences, 2012, 4(1) : 381 -387.
  • 6Stauffer C, Grimson W E L. Adaptive background mix- ture models for real - time tracking [ C ]// 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 1999, 2 : 246- 252.
  • 7Brutzer S, Hoferlin B, Heidemann G. Evaluation of background subtraction techniques for video surveillance [C]. 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2011 : 1937 - 1944.
  • 8Baumberg A, Hogg D C. Learning Deformable Models for Tracking the Human Body [ J ]. Motion - Based Recogni- tlon, 1997,9:39 -60.
  • 9Lipton A J, Fujiyoshi H, Patil R S. Moving target classi- fication and tracking from real - time video [ C ]// Pro- ceedings Fourth IEEE Workshop on Applications of Com- puter Vision. WACV98. IEEE, 1998:8 - 14.
  • 10M. Van Droogertbroeck and O. Paquot. Background Sub- traction: Experiments and Improvements for ViBe [ C ]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2012.

共引文献67

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部