期刊文献+

基于生成对抗网络的综合能源负荷场景生成方法 被引量:8

Load Scenario Generation of Integrated Energy System Using Generative Adversarial Networks
原文传递
导出
摘要 综合能源负荷场景生成是研究能源计量、规划运行等领域问题的基础,具有重要意义。但由于数据采集困难、综合能源负荷多能耦合等因素的限制,综合能源负荷场景的多样化生成仍是一大难题。提出了一种基于生成对抗网络(generative adversarial networks,GAN)的综合能源负荷场景生成方法。首先建立梯度惩罚优化的Wasserstein生成对抗网络模型,解决综合能源负荷的高随机性可能带来的不收敛或模式崩溃问题。其次,基于深度长短期记忆(long short-term memory,LSTM)的循环神经网络构建生成对抗网络的生成器和判别器,使模型更适用于复杂综合能源负荷数据生成。算例结果表明,所提模型的生成负荷场景在概率分布、曲线标志性特征和冷热电负荷之间相关性等方面相较于蒙特卡洛法和原始生成对抗网络均获得了较好结果,可以在不同模式下生成具有多样性且逼真的负荷场景。 Load scenario generation is the basis of studying energy measurement,operation scheduling and other fields,which is of great significance.Due to difficulty of data collection and multi-energy coupling of integrated energy system,it is still a big challenge to generate load data with diversity.A novel multi-load scenario generation method based on generative adversarial network(GAN)is proposed in this paper.Firstly,the Wasserstein generative adversarial network model with gradient penalty optimization is established to overcome the misconvergence and mode collapse caused by high randomness of load.Secondly,on the basis of the recurrent neural network with deep long-term and short-term memory,the generator and discriminator in the GAN are constructed to be more suitable for load data generation of complex integrated energy system.The result shows that the scenarios generated by proposed model achieves better results in probability distribution,curve signature features and correlation in cooling,heating and power load than original GAN and Monte Carlo method.The model can generate realistic load scenarios with diversity in different modes.
作者 朱庆 郑红娟 唐子逸 韦思雅 邹子骁 吴熙 ZHU Qing;ZHENG Hongjuan;TANG Ziyi;WEI Siya;ZOU Zixiao;WU Xi(NARI Technology Co.,Ltd.,Nanjing 211106,China;Hangzhou Yuhang District Power Supply Company of State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 311100,China;School of Electrical Engineering,Southeast University,Nanjing 210096,China)
出处 《电力建设》 CSCD 北大核心 2021年第12期1-8,共8页 Electric Power Construction
基金 国家电网有限公司总部科技项目“大规模综合能源计量系统数字与真型混合仿真关键技术研究”(5600-201955167A-0-0-00)。
关键词 综合能源系统 场景生成 深度学习 生成对抗网络(GAN) 长短期记忆网络(LSTM) integrated energy system scenario generation deep learning generative adversarial network(GAN) long short-term memory(LSTM)
  • 相关文献

参考文献11

二级参考文献135

共引文献601

同被引文献170

引证文献8

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部