摘要
研究了满足β(L)=m-3的m维非交换3-李代数的结构,证明了β(L)=m-n的一般m维非交换n-李代数L幂零的充要条件,并分别对导代数维数是1和2且导代数包含中心的m维非交换3-李代数L的结构进行了刻画.
The structure of m dimensional non-abelian 3-Lie algebras withβ(L)=m-3 is discussed.It is proved that an m dimensional non-abelian n-Lie algebra L withβ(L)=m-n is nilpotent if and only if it contains a nilpotent subalgebra A with L 1=A 1;and there exists an(m-n)dimensional abelian ideal I such that the complementary space of I has non-zero products.And then the structure of non-abelian m dimensional 3-Lie algebras L with one or two dimensional derived algebras satisfying Z(L)■L^(1) is characterized.
作者
白瑞蒲
吴婴丽
BAI Rui-pu;WU Ying-li(College of Mathematics and Information Science,Hebei University,Baoding 071002,China;Key Laboratory of Machine Learning and Computational Intelligence of Hebei Province,Baoding 071002,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2021年第4期6-10,共5页
Journal of Northeast Normal University(Natural Science Edition)
基金
河北省自然科学基金资助项目(20182011126).