期刊文献+

基于不确定理论的常规公交车辆调度优化 被引量:4

Optimization of Regular Bus Scheduling Based on Uncertainty Theory
下载PDF
导出
摘要 为提高公交车的利用效率,本文将公交车辆调度方案划分为高峰型和平峰型。在考虑乘客候车时间与站间运行时间不确定的现实条件下,综合考虑不同车型的运营成本和乘客候车成本;基于不确定理论建立混合车型下的双重不确定多目标规划模型,并通过遗传算法的python编码求解。以南昌市211路公交上行为例,进行sumo仿真结果表明:在保证公交持续运营的前提下,调整车辆调度方案有助于降低成本和提高运行效率;在高峰期,将发车间隔降低25%,公交车统一使用纯电动客车,总成本降低5%,平均延误减少4%;平峰期,总成本降低10%,平均延误降低3%。两组仿真结果发现,考虑不确定因素的公交车辆合理调度安排有利于充分利用公交车辆资源和提高运行效率。 To improve the utilization of buses,two bus dispatching schemes are designed for peak and non-peak hours.Under the uncertainty of passenger waiting time,inter-station running time,and operation cost of different types of vehicles,an uncertain multi-objective programming model for hybrid vehicles is established based on the theory of uncertainty.The model was solved by a genetic algorithm,performed in Python.Taking the No.211 bus in Nanchang City as an example,simulation results showed that,adjusting the adjustment of the vehicle schedule can reduce the operation cost and improve the operation efficiency based on the continuous operation of the buses.In the peak period,with the use of pure electric buses and the departure interval reduced by 25%,the total cost will be reduced by 5%and the average delay will be reduced by 4%.During the non-peak period,the total cost is reduced by 10%and the average delay is reduced by 3%.With the two sets of simulations,it was found that the reasonable schedule of public transport vehicles considering uncertainty is conducive to making full use of resources and improving operation efficiency.
作者 薛运强 郭军 钟蒙 安静 XUE Yun-qiang;GUO Jun;ZHONG Meng;AN Jing(College of Transportation and Logistics,East China Jiaotong University,Nanchang 330013,China;Faculty of Urban Construction,Beijing University of Technology,Beijing 100024,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第6期115-122,130,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(71961006) 江西省社会科学基金重点项目(21YJ03) 江西省研究生创新专项资金(YC2021-S456)。
关键词 城市交通 车辆调度 不确定理论 常规公交 遗传算法 urban traffic vehicle dispatching uncertain theory conventional public transport genetic algorithm
  • 相关文献

参考文献6

二级参考文献68

  • 1曹亦文,巨永锋,陈锋.城市公交车发车频率优化模型[J].安徽大学学报(自然科学版),2007,31(2):29-32. 被引量:9
  • 2Lin B, Iwamura K. Chance constrained programming with fuzzy parameters[J]. Fuzzy Sets and Systems,1998,94(2):227-237.
  • 3Liu B, Iwamura K. A note on chance constrained programming with fuzzy coefficients[J]. Fuzzy Sets and Systems,1998,100(1-3):229-233.
  • 4Liu B. Minimax chance constrained programming models for fuzzy decision sysstems[J]. Information Sciences,1998,112(1-4):25-38.
  • 5Liu B. Dependent-chance programming with fuzzy decisions[J]. IEEE Transactions on Fuzzy Systems,1999,7(3):354-360.
  • 6Liu B. Uncertain Programming[M]. New York: John Wiley & Sons,1999.
  • 7Liu B, Lai K K. Stochastic programming models for vehical routing problems[J]. Asian Information-Science-Life, 2002,1(1).
  • 8Liu B, Random fozzy dependent-chance programming and its hybrid intelligent algorithm[J]. Information Sciences, to be published.
  • 9Liu B. Dependent-chance programming in fuzzy environments[J]. Fuzzy Sets and Systems,2000,109(1):97-106.
  • 10Liu B, Iwamura K. Topological optimization models for communication network with multiple reliability goals[J]. Computers & Mathematics with Applications,2000,39:59-69.

共引文献80

同被引文献35

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部