期刊文献+

基于云平台的温室大棚管理系统 被引量:10

Greenhouse management system based on cloud platform
下载PDF
导出
摘要 针对国内温室大棚监测系统存在监测不全面、智能化程度不高等问题,在现有温棚技术的基础上,提出了一种基于云平台的温室大棚管理系统。依托STM32F103RCT6硬件平台,通过采集端的传感器和摄像头实时监测温棚内部环境数据,将监测结果通过4G模组ML302发送至OneNet云平台,农户可通过App客户端随时随地查看温棚内环境状况。当温棚内环境出现异常,可通过比例—积分—微分(PID)算法控制执行端设备的方式对温棚内各项环境数据进行自动调节,必要时可通过客户端手动调节,从而满足大棚农作物生长所需的各项环境要求。 In view of a series of problems existing in the domestic greenhouse monitoring system, such as incomplete monitoring and low level of intelligence, based on the existing greenhouse technology, a greenhouse management system based on cloud platform is proposed.Relying on STM32 F103 RCT6 hardware platform, the system monitors the inner environment data of the greenhouse in real time through the sensors and cameras at the acquisition end, and sends the monitoring results to OneNet cloud platform through the 4 G module ML302.The farmers can view the environmental conditions of the greenhouse anytime and anywhere through App client.When the environment in the greenhouse is abnormal, proportional-integral-differential(PID)algorithm can be used to control the equipment at the execution end to automatically adjust the environmental data in the greenhouse.If necessary, it can be manually adjusted by the client to meet the environmental requirements for the growth of crops in the greenhouse.
作者 邹彬 董军堂 杨延宁 李雪 李蓓茹 ZOU Bin;DONG Juntang;YANG Yanning;LI Xue;LI Beiru(School of Physics and Electronic Information,Yan’an University,Yan’an 716000,China;Shaanxi Key Laboratory Jointly Built by Shaanxi Province and City of Intelligent Processing for Big Energy Data,Yan’an 716000,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第12期112-114,118,共4页 Transducer and Microsystem Technologies
基金 延安市科技计划项目(2019ZCNZ—001) 延安市科技创新团队建设项目(2017CXTD—01) 延安大学产学研合作项目(CXY201902) 延安大学研究生教育创新计划项目(YCX2020056) 延安大学研究生教改项目(YDYJG2019018,YDYJG2019016) 陕西省教育厅科技计划项目(21JK0983) 陕西省能源大数据智能处理省市共建重点实验室研究基金资助项目(IPBED11,IPBED16)。
关键词 温室大棚 STM32F103RCT6 OneNet云平台 比例—积分—微分算法 客户端App greenhouse STM32F103RCT6 OneNet cloud platform proportional-integral-differential(PID)algorithm client App
  • 相关文献

参考文献9

二级参考文献43

共引文献74

同被引文献110

引证文献10

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部