期刊文献+

Compensation of turbulence-induced wavefront aberration with convolutional neural networks for FSO systems 被引量:5

原文传递
导出
摘要 To reduce the atmospheric turbulence-induced power loss, an Alex Net-based convolutional neural network(CNN) for wave-front aberration compensation is experimentally investigated for free-space optical(FSO) communication systems with standard single mode fiber-pigtailed photodiodes. The wavefront aberration is statistically constructed to mimic the received light beams with the Zernike mode-based theory for the Kolmogorov turbulence. By analyzing impacts of CNN structures, quantization resolution/noise, and mode count on the power penalty, the Alex Net-based CNN with 8 bit resolution is identified for experimental study. Experimental results indicate that the average power penalty decreases to 1.8 d B from 12.4 d B in the strong turbulence.
作者 Min’an Chen Xianqing Jin Shangbin Li Zhengyuan Xu 陈民安;金显庆;李上宾;徐正元(CAS Key Laboratory of Wireless-Optical Communications,University of Science and Technology of China,Hefei 230027,China)
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第11期16-21,共6页 中国光学快报(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Nos.61971394 and 61631018) the Key Research Program of Frontier Sciences of CAS(No.QYZDYSSW-JSC003) the Fundamental Research Funds for the Central Universities(No.WK3500000006).
  • 相关文献

参考文献2

共引文献9

同被引文献49

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部