期刊文献+

基于赋权KNN-LSTM模型的PM_(2.5)质量浓度预测 被引量:4

Prediction of PM_(2.5) concentration in LSTM model based on weighted K-nearest neighbor algorithm
下载PDF
导出
摘要 在空气污染指数的监测中,传统单项预测方法不能反映PM_(2.5)质量浓度与复杂因素的非线性关系,文章提出一种基于赋权K近邻(K-nearest neighbor,KNN)算法的长短期记忆(long short-term memory,LSTM)神经网络模型来预测PM_(2.5)质量浓度。首先利用相关性分析提取与PM_(2.5)相关性较大的空间因素,并对每个时间节点选取K个近邻,赋予相应权重来表现不同的影响力度;然后通过重构原始数据K倍维度的新数据集,进行LSTM神经网络模型的监督学习训练,提取时间序列的特征和固有的长期依赖关系,最后实现PM_(2.5)日值质量浓度不同未来时刻的预测。实验结果表明,文中提出的赋权KNN-LSTM预测模型具有可行性和有效性,和其他模型相比,表现出较高精度的预测性能。 In the monitoring of the air pollution index,traditional single prediction method cannot reflect the non-linear relationship between PM_(2.5) mass concentration and complex factors.Therefore,a long short-term memory(LSTM)neural network model based on the weighted K-nearest neighbor(KNN)algorithm is proposed to predict PM_(2.5) concentration.Firstly,the correlation analysis is used to extract the spatial factors that are more correlated with PM_(2.5) and K neighbors are selected for each time node,the corresponding weights are given to show different influence forces.Then,based on the reconstruction of the new data set with K dimensions of the original data,the LSTM neural network model is trained with supervised learning to extract the characteristics of time series and the inherent long-term dependence,and finally the prediction of daily PM_(2.5) mass concentration at different future times is realized.The experimental results show that the proposed weighted KNN-LSTM prediction model is feasible and effective,and has higher precision compared with other models.
作者 刘晴晴 陈华友 LIU Qingqing;CHEN Huayou(School of Economics, Anhui University, Hefei 230601, China;School of Mathematical Sciences, Anhui University, Hefei 230601, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第12期1689-1697,共9页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(71871001,71771001)。
关键词 K近邻(KNN)算法 长短期记忆(LSTM)神经网络 监督学习 PM_(2.5)预测 K-nearest neighbor(KNN)algorithm long short-term memory(LSTM)neural network supervised learning PM_(2.5) prediction
  • 相关文献

参考文献6

二级参考文献30

  • 1杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 2刘学欣,薛安.2008年北京市大气质量的灰色预测[J].环境工程,2006,24(2):69-71. 被引量:16
  • 3谭春英,谢恒星,林建宏,张晓杰.灰色系统理论在烟台市区大气环境质量分析和预测中的应用[J].安徽农业科学,2006,34(20):5161-5162. 被引量:7
  • 4任成忠.大气污染灰色预测法的研究[J].环境工程,1996,14(4):35-38. 被引量:3
  • 5A. Chaloulakou and D. Assimacopoulos. Forecasting Daily Maximum Ozone Concentration in the Athens Basin[J].Environmental Pollution ,2002, (102).
  • 6Box, G. E. P., Jenkins, G. M. Time Series Analysis: Forecasting and Control[M]. Holden-Day,1970.
  • 7Hector Jorquera and Wilfredo Palma. A Ground-Level Ozone Forecasting Model for Santiago [J]. Chile Journal of Forecasting, 2002,(21).
  • 8J. Navarro-Esbri and E. Diarnadopoulos. Time Series Analysis and Forecasting Techniques for Municipal Solid Waste Management[J]. Resource, Conservation and Recycling,2002,(35).
  • 9Krishan Kumar, A. K. Yadav and H. Hassan. Forecasting Daily Maximum Surface Ozone Concentration in Brunei Darussalam-- An ARIMA Modeling Approach[J]. Journal of Air & Waste Management Association,2004, (54).
  • 10Peter Romilly. Time Series Modeling of Global Mean Temperature for Managerial Decision-making [J]. Journal of Environmental Management,2005, (76).

共引文献295

同被引文献46

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部