期刊文献+

基于FAERS数据库的3种碳青霉烯类药物不良反应信号挖掘研究 被引量:6

Adverse drug reaction signals of 3 carbapenems based on the FAERS database
原文传递
导出
摘要 目的挖掘3种碳青霉烯类药物(美罗培南、亚胺培南、厄他培南)的不良反应信号,为临床安全用药提供一定的参考。方法提取FAERS 数据库 2015年第一季度至 2020年第三季度3种碳青霉烯类药物的不良反应报告数据,采用报告比值比(ROR)法和比例报告比值(PRR)法对相关报告进行数据挖掘分析。结果 3种碳青霉烯类药物共得到423个有效不良反应信号,其中美罗培南有效信号231个,亚胺培南有效信号96个,厄他培南有效信号96个。信号累及22个不同的系统器官(SOC),其中美罗培南主要集中于感染及侵染类疾病(构成比15.83%)、全身性疾病及给药部位各种反应(构成比15.74%)、皮肤及皮下组织类疾病(构成比9.94%);亚胺培南主要集中于全身性疾病及给药部位各种反应(构成比20.92%)、各类检查(构成比12.81%)、感染及侵染类疾病(构成比11.11%);厄他培南主要集中于各类神经系统疾病(构成比37.25%)、精神病类(构成比32.10%)。结论 ROR法及PRR法分析发现美罗培南、亚胺培南、厄他培南发生不良反应累及的主要系统具有差异性,可为临床用药提供参考,促进临床安全用药。 Objective To explore the adverse drug reaction (ADR) signals of 3 carbapenems (meropenem,imipenem and ertapenem) to supply reference for their clinical safe use.Methods The ADR data of 3 carbapenem drugs were collected from the FAERS database from the first quarter of 2015 to the third quarter of 2020,and the reporting odds ratio (ROR) and proportional reporting ratio (PRR) were used for data mining.Results Totally 423 ADR signals were obtained from the 3 carbapenems,including 231 from meropenem,96 from imipenem,and 96 from ertapenem.The signals involved 22 system organ classes.Signals from meropenem mainly covered on infections and infective diseases (15.83%),systemic diseases and various reactions at the administration sites (15.74%),and skin and subcutaneous tissue diseases (9.94%).Signals from imipenem mainly involved systemic diseases and various reactions at the administration sites (20.92%),various examinations (12.81%),and infection and infective diseases (11.11%).Signals from ertapenem mainly included various neurological diseases (37.25%),and mental illness (32.10%).Conclusion The major systems involved in the ADRs of meropenem,imipenem and ertapenem vary,which deserves attention in clinical safe drug use.
作者 唐春梅 杨思芸 詹阳洋 陈力 TANG Chun-mei;YANG Si-yun;ZHAN Yang-yang;CHEN Li(West China Second University Hospital,Sichuan University,Chengdu 610041;Key Laboratory of Birth Defects and Related Diseases of Women and Children,Sichuan University,Ministry of Education,Chengdu 610041;Department of Pharmacy,Second Clinical College of North Sichuan Medical College,Nanchong City Central Hospital,Nanchong Sichuan 637000;Key Laboratory of Individualized Drug Treatment in Nanchong,Nanchong Sichuan 637000;Department of Pharmacy,Chengdu Chenghua District Health Care Hospitat,Chengdu 610021)
出处 《中南药学》 CAS 2021年第12期2576-2581,共6页 Central South Pharmacy
基金 南充市市校科技战略合作项目(No.18SXHZ0230) 南充市科学技术局应用技术研究与开发资金项目(No.KY-20YFZJ0116)。
关键词 碳青霉烯类药物 FAERS数据库 不良反应信号挖掘 报告比值比 比例报告比值 carbapenem drug FAERS database adverse reaction signal mining ROR PRR
  • 相关文献

参考文献11

二级参考文献120

  • 1陈延,郭剑非,江冬明,詹思延.数据库挖掘和药物不良反应信号的探索与分析(上)[J].药物流行病学杂志,2006,15(1):43-45. 被引量:4
  • 2陈延,郭剑非,江冬明,詹思延.数据库挖掘和药物不良反应信号的探索与分析(下)[J].药物流行病学杂志,2006,15(2):104-107. 被引量:27
  • 3WILLEM K, AMERY M D, PhD, FFPM. Signal Generation from Spontaneous Adverse Event Reports[J]. Pharmacoepidemiology and Drug Safety, 1999, 8: 147-150.
  • 4Hauben M, Zhou X. Quantitative methods in pharmacovigilance: focus on signal detection[J]. Drug Saf, 2003, 26(3):159-186.
  • 5Bate A, Lindquist M, Edwards I R, et al, A Bayesian neural network method adverse drug reaction singal generation[J]. Eur J Clin Pharmacol, 1998, 54(4):315-321.
  • 6Clark J A, Klincewicz S L, Stang P E. Spontaneous adverse event signaling methods: classification and use with health care treatment products[J]. Epidemiol Rev, 2001, 23(2):191-210.
  • 7Egberts A C, Meyboom R H, van Puijenbroek E P. Use of measures of disproportionality in pharmacovigilance: three Dutch examples [J]. Drug Saf, 2002, 25(6):453-458.
  • 8Hauben M, Horn S, Reich L. Potential use of data-mining algorithms for the detection of 'surprise' adverse drug reactions [J]. Drug Saf,2007, 30(2):14,3-155.
  • 9van Puijenbroek E P, Bate A, Leufkens H G, et al, A comparison of measures of dispropor-tionality for signal detection in spontaneous reporting systems for adverse drug reactions[J]. Pharmacoepidemiol Drug Saf, 2002, 11(1):3-10.
  • 10Szarfman A, Machado SG, O'Neill RT. Use of screening algorithms and computer systems to efficiently signal higher-thanexpected combinations of drugs and events in the US FDA's spontaneous reports database[J]. Drug Saf, 2002, 25(6): 381-392.

共引文献258

同被引文献88

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部