期刊文献+

基于离散Walsh-Hadamard变换和引导滤波的多聚焦图像融合 被引量:2

Multi-Focus Image Fusion Based on Discrete Walsh-Hadamard Transform and Guided Filtering
原文传递
导出
摘要 多聚焦图像融合作为一种有效的信息融合方法,在图像处理和计算机视觉领域引起了越来越多的关注。提出了一种基于离散Walsh-Hadamard变换(DWHT)和引导滤波的多聚焦图像融合算法。首先,提出了一种新的聚焦区域检测方法,该方法运用DWHT并计算L1范数得到初始决策图;然后,运用数学形态学方法和引导滤波优化生成最终决策图;最后,由像素加权平均规则和最终决策图得到融合图像。为验证所提算法的有效性,选择3组研究中普遍使用的多聚焦图像进行实验,并将该算法运用于实际应用中采集到的2组多聚焦序列图像,与其余几种算法相比,所提算法在主观定性分析和客观定量评价指标上均表现出明显的优势。实验结果表明,与其他多聚焦图像融合算法相比,所提算法能更有效地从源图像中提取聚焦区域,增强融合图像的细节保留能力和空间连续性。 As an efficient method of information fusion,multi-focus image fusion has attracted increasing interests in image processing and computer vision.A multi-focus image fusion algorithm based on discrete Walsh-Hadamard transform(DWHT)and guided filtering is proposed.First,a new focus region detection method is proposed,which uses DWHT and calculates L1 norm to obtain the initial decision map;then,the mathematical morphology method and guided filtering optimization are used to generate the final decision map;finally,the fused image is obtained by using the pixel-wise weighted-averaging rule and the final decision map.In order to verify the effectiveness of the proposed algorithm,three groups of multi-focus images commonly used in research are selected for experiments,and the proposed algorithm is applied to two groups of multi-focus sequence images collected in practical application,compared with other algorithms,the proposed algorithm shows obvious advantages in subjective qualitative analysis and objective quantitative evaluation indicators.Experimental results show that compared with other multi-focus image fusion algorithms,the proposed algorithm can extract the focus region from the source image more effectively,and enhance the detail retention ability and spatial continuity of the fused image.
作者 胡亮 胡学娟 黄圳鸿 徐露 连丽津 Hu Liang;Hu Xuejuan;Huang Zhenhong;Xu Lu;Lian Lijin(Sino-German College of Intelligent Manufacturing,Shenzhen Technology Universitgy,Shenzhen,Guangdong 518118,China;Key Laboratory of Adoanced Optical Precision Manufacturing Technology of Guangdong Provincial Higher Edl ucation Instit ute,Shenzhen,Guangdong 518118,China;Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering,Shenzhen,Guangdong 518118,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第22期113-123,共11页 Laser & Optoelectronics Progress
基金 深圳市科技计划基础研究项目(JCYJ20180301170959233)。
关键词 图像处理 多聚焦图像融合 离散Walsh-Hadamard变换 引导滤波 聚焦区域检测 image processing multi-focus image fusion discrete Walsh-Hadamard transform guided filtering focus region detection
  • 相关文献

参考文献5

二级参考文献39

  • 1欧阳宁,李子,袁华,陈利霞.基于自适应稀疏表示的多聚焦图像融合[J].微电子学与计算机,2015,32(6):22-26. 被引量:6
  • 2苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报,2006,28(3):466-470. 被引量:36
  • 3杨春玲,陈冠豪,谢胜利.基于梯度信息的图像质量评判方法的研究[J].电子学报,2007,35(7):1313-1317. 被引量:62
  • 4WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:From error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
  • 5CHEN G,YANG C,XIE S.Gradient-based structural similarity for image quality assessment[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2006:2929-2932.
  • 6CHEN Y,LIAO B.An image quality assessment algorithm based on dual-scale edge structure similarity[C]//Proceedings of the Second International Conference on Innovative Computing,Information and Control.Piscataway:IEEE Press,2007:56-58.
  • 7SHNAYDERMAN A,GUSEV A,ESKICIOGLU A M.An SVD-based grayscale image quality measure for local and global assessment[J].IEEE Transactions on Image Processing,2006,15(2):422-429.
  • 8NILL N B,BOUZAS B H.Objective image quality measure derived from digital image power spectra[J].Optical Engineering,1992,31(4):813-825.
  • 9LUO H.A training-based no-reference image quality assessment algorithm[C]// Proceedings of IEEE International Conference on Image Processing.Piscataway:IEEE Press,2004:2973-2976.
  • 10SHEIKH H R,BOVIK A C,CORMACK L.Blind quality assessment of JPEG2000 compressed images using natural scene statistics[C]// Proceedings of the Thirty-Seventh Asilomar Conference on Signals,Systems and Computers.Piscataway:IEEE Press,2003:1403-1407.

共引文献90

同被引文献21

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部