期刊文献+

In vitro and in vivo evaluation of implantable bacterial-killing coatings based on host defense peptides and their synthetic mimics

原文传递
导出
摘要 Contact-killing antimicrobial coatings based on host defense peptides(HDPs) and their synthetic mimics have shown potential as powerful tools to combat implant-associated infections. Covalent modification of the antimicrobial surface has been utilized to prevent early-stage microbial infections owing to the less drug-leaching possibility that is beneficial to human health and the natural environment. Although considerable progress has been achieved in preparing contact-killing antimicrobial surfaces, discussions focusing on the in vitro and in vivo evaluations of these surfaces are limited. In this review, we summarized the established in vitro methods to simulate the practical interaction of microbes with the surrounding biological environment and the reported in vivo studies at different implant sites. We suggested that the in vivo specific site infection model is essential to gain a comprehensive understanding of these antimicrobial coatings in the preclinical stage, which can be established based on investigations performed using various in vitro assays and conventional non-specific site infection models. Overall, these precedent studies focusing on bacterial contact-killing coatings modified with HDPs and HDP mimics can be considered as critical to assess the surface antibacterial ability and to guide the future developments and applications of antimicrobial surfaces.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第32期90-104,共15页 材料科学技术(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos.21774031,21861162010and 21574038) the Clinical Research Plan of SHDC (No.SHDC2020CR4024) the Natural Science Foundation of Shanghai (No.18ZR1410300)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部