摘要
The transformations between the phasesα_(2)(Ti_(3)Al)andω_(o)were investigated in a lamellar multiphase titanium aluminide alloy based onγ(TiAl).The paper complements an earlier investigation performed on the same material in which the importance of deformation-induced twin structures for theα_(2)→ω_(o) transformation was demonstrated.The present study shows that the reverse transformationω_(o)→α_(2) can also occur during high-temperature deformation.The transformation is probably triggered by constraint stresses,which exist between the different constituents due to the crystalline mismatch.The combined operation of mechanical twinning of theα_(2) phase and the reversible transformation fully converts theα_(2) lamellae into a mixture ofα_(2) andω_(o).This conversion greatly reduces the mechanical anisotropy existing in formerα_(2) lamellae.Regarding the technical use of the alloy,the stability of the converted structure with respect to further annealing was also examined.The reported processes occur at the nano-meter and sub nano-meter scale,thus,advanced characterization techniques were applied,such as high-resolution transmission electron microscopy(HRTEM)and atom probe tomography(APT).
基金
supported by the National Natural Science Foundation of China(contract No.51971175)
Natural Science Basic Research Plan of Shaanxi Province(contract No.2020JM-097)
State Key Laboratory of Advanced Metals and Materials(contract No.2020-ZD03)
Research Fund of State Key Laboratory of Solidification Processing(contract No.2021-TS-05)
the"111" Project(contract No.B20028)。