期刊文献+

A sparsity adaptive compressed signal reconstruction based on sensing dictionary 被引量:1

下载PDF
导出
摘要 Signal reconstruction is a significantly important theoretical issue for compressed sensing.Considering the situation of signal reconstruction with unknown sparsity,the conventional signal reconstruction algorithms usually perform low accuracy.In this work,a sparsity adaptive signal reconstruction algorithm using sensing dictionary is proposed to achieve a lower reconstruction error.The sparsity estimation method is combined with the construction of the support set based on sensing dictionary.Using the adaptive sparsity method,an iterative signal reconstruction algorithm is proposed.The sufficient conditions for the exact signal reconstruction of the algorithm also is proved by theory.According to a series of simulations,the results show that the proposed method has higher precision compared with other state-of-the-art signal reconstruction algorithms especially in a high compression ratio scenarios.
出处 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第6期1345-1353,共9页 系统工程与电子技术(英文版)
基金 supported by the National Natural Science Foundation of China(61773202,71874081) the Special Financial Grant from China Postdoctoral Science Foundation(2017T100366) the Key Laboratory of Avionics System Integrated Technology for National Defense Science and Technology,China Institute of Avionics Radio Electronics(6142505180407) the Open Fund of CAAC Key laboratory of General Aviation Operation,Civil Aviation Management Institute of China(CAMICKFJJ-2019-04) the Innovation Project of the Civil Aviation Administration of China(EAB19001)。
  • 相关文献

参考文献2

二级参考文献14

  • 1Donoho D.Compressed Sensing[J].IEEE Trans on Information Theory,2006,52(04): 1289-1306.
  • 2Tropp J A,Gilbert A C.Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J].IEEE Trans on Information Theory,2007,53(12):4655-4666.
  • 3Needell D,Vershynin R.Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit[J].Foundations of Computational Mathematics,2009,9(03):317-334.
  • 4Do T T,Lu Gan,Nguyen N,et al.Sparsity Adaptive Matching Pursuit Algorithm for Practical Compressed Sensing[C].California:Asilomar Conference on Signals,Systems and Computers, 2008:581-587.
  • 5Candes E J,Romberg J K,Tao T.Stable Signal Recovery from Incomplete and Inaccurate Measurements[J].Communications on Pure and Applied Mathemati cs,2006,59(08): 1207-1223.
  • 6Chen S,Donoho D,Saunders M.Atomic Decomposition by Basis Pursuit[J].SIAM Journal on Scientific Computing,1998,20(01):33-61.
  • 7YANG Cheng,FENG Wei,FENG Hui,et al.An Adaptive Subspace Tracking Algorithm for Sparse Degree in Compressed Sampling[J].Journal of Electroni cs,2010,8(01):1914-1917.
  • 8石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 9芮国胜,王林,田文飚.一种基于基追踪压缩感知信号重构的改进算法[J].电子测量技术,2010,33(4):38-41. 被引量:23
  • 10杨成,冯巍,冯辉,杨涛,胡波.一种压缩采样中的稀疏度自适应子空间追踪算法[J].电子学报,2010,38(8):1914-1917. 被引量:65

共引文献16

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部