期刊文献+

求解绝对值方程的改进捕鱼算法

Improved Fishing Algorithm for Solving Absolute Value Equations
下载PDF
导出
摘要 在分析捕鱼算法不足的基础上,提出了一种求解绝对值方程的改进捕鱼算法。该算法通过使用新的撒网方法来降低计算机内存消耗并减少计算量,从而提高算法性能。数值实验结果表明,在求解高维绝对值方程时,与捕鱼算法相比,改进捕鱼算法具有内存占用低、运行速度快等优点;与粒子群等群智能算法相比,改进捕鱼算法在求解精度等各项指标上均优于其他对比算法。 Based on the analysis of the shortcomings of fishing algorithm, an improved fishing algorithm for solving absolute value equation is proposed. The algorithm uses a new method to reduce the computer memory consumption and reduce the amount of calculations, so as to improve the performance of the algorithm. The numerical results show that the improved fishing algorithm has the advantages of low memory consumption and fast running speed compared with the fishing algorithm when solving the high-dimensional absolute value equations;Compared with particle swarm optimization and other swarm intelligence algorithms, the improved fishing algorithm is superior to other comparison algorithms in solving accuracy and other indicators.
作者 陈建荣 陈建华 Chen Jianrong;Chen Jianhua(School of Public Health and Management,Youjiang Medical University for Nationalities,Baise 533000;You Jiang District Medical Security Service Center,Baise 533000)
出处 《现代计算机》 2021年第32期27-32,共6页 Modern Computer
基金 2019年度广西高等教育本科教学改革工程项目(2019JGB305) 2020年右江民族医学院校级科研课题(yy2020gcky037) 2018年右江民族医学院校级科研课题(yy2018ky026)。
关键词 群智能算法 捕鱼算法 绝对值方程 改进算法 Swarm intelligence algorithm fishing algorithm absolute value equations improved algorithm
  • 相关文献

参考文献10

二级参考文献115

  • 1Holland J H.Adaptation in Nature and Artificial Systems[M].[S.l.]: MIT Press, 1992.
  • 2Kennedy J,Eberhart R C,Shi Y.Swarm intelligenee[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 3Theraulaz G,Bonabeau E, Deneubourg J L.Self-organization of hierarchies in animal societies:The case of the primitively eusocial wasp polistes dominulus christ[J]Journal of Theoretical Biology,1995, 174:313-323.
  • 4Theraulaz G, Bonabeau E, Deneubourg J L.Response threshold reinforcement and division of labour in insect societies[C]//Proceedings of the Royal Society of London B,1998,265:327-335.
  • 5Eusuffm M,Lansey K E.Optimization of water distribution network design using shuffled frog leaping algorithm[J].Joumal of Water Resources Planning and Management,2003,129(3):210-225.
  • 6[11]Shi Y, Eberhart R. Fuzzy adaptive particle swarm optimization [ A ].Proc. Congress on Evolutionary Computation[ C ]. Seonl, Korea. Piscataway, NJ: IEEE Service Center,27 - 30 May 2001.1.101 - 106.
  • 7[12]Jacques Riget,Jakob S Vesterstrom. A diversity-guided particle swarm optimization-the ARPSO [ DB/OL ]. http://citeseer. nj. nec. com/riget02diversityguided. html.
  • 8[13]Lovbjerg M, Krink T. Extending particle swarms with self-organized criticality[ A ]. Proceedings of the Fourth Congress on evolutionary computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2. 1588 -1593.
  • 9[14]Al-kazemi B, Mohan C K. Multi-phase generalization of the particle swarm optimization algorithm[A]. Proceedings of the 2002 Congress on Evolutionary Computation[ C ]. Honolulu, HI USA, 12 - 17 May 2002.1.489 - 494.
  • 10[15]Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension[ A]. Proceedings of the Fourth Congress on Evolutionary Computation (CEC-2002) [ C ]. Honolulu, HI USA, 2002.2.1474- 1479.

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部