期刊文献+

基于信息熵的地铁司机作业复杂度分析方法研究 被引量:1

Research on Analysis Method of Metro Driver's Operation Complexity Based on Information Entropy
下载PDF
导出
摘要 文中提出了一种基于信息熵的地铁司机行车作业复杂度的计算方法。通过分析地铁司机协同作业的特征,从作业内容特征、司机个人因素以及作业协同需求三个方面提取出量化因子,归纳为5项指标并计算其权重。结合信息熵的概念对行车作业复杂度进行量化,分解作业结构与要求,绘制图形熵,计算熵值得出复杂度。最后选取司机错开门处置及切除关门旁路两项作业进行分析,详细解释作业复杂度计算过程,并通过对比验证此方法的实用性和合理性。结果表明,本方法切实可行,为量化行车作业难易度及司机作业安全可靠性提供理论基础和方法依据。 In this paper,a method for calculating the operation complexity of subway drivers based on information entropy is proposed.Through the analysis of the characteristics of subway drivers'cooperative work,the quantitative factors are extracted from three aspects of the characteristics of operation content,the driver's personal factors and the demand of operation cooperation,which are summarized into five indexes and their weights are calculated.Combined with the concept of information entropy,the complexity of driving operation is quantified,the operation structure and requirements are decomposed,the graphic entropy is drawn,and the entropy is calculated to obtain the complexity.Finally,the two tasks of the driver's wrong door opening and the removal of the door-closing bypass are analyzed,the calculation process of the operation complexity is explained in detail,and the practicability and rationality of this method are verified by comparison.The results show that this method is feasible,and the test provides theoretical basis and method basis for quantifying the difficulty of driving operation and the safety and reliability of driver operation.
作者 汪健 王奋 刘志钢 WANG Jian;WANG Fen;LIU Zhi-gang(School of Urban Railway Transportation,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《物流工程与管理》 2021年第12期87-91,共5页 Logistics Engineering and Management
关键词 复杂度 信息熵 协同作业 complexity information entropy collaborative work
  • 相关文献

参考文献4

二级参考文献33

  • 1张明智,罗凯,吴曦.空间信息网络关键节点分析方法研究[J].系统仿真学报,2015,27(6):1235-1239. 被引量:9
  • 2温忠麟,张雷,侯杰泰,刘红云.中介效应检验程序及其应用[J].心理学报,2004,36(5):614-620. 被引量:7704
  • 3张力,邓志良,欧阳文昭,王以群.人员可靠性与系统安全[J].中国安全科学学报,1995,5(2):35-39. 被引量:11
  • 4金磊,徐德蜀.中国安全文化研究与现代应用探讨[J].软科学,1995,9(4):10-14. 被引量:3
  • 5Li Dong, Hu Guyu, Wang Yibing, et al. Network traffic classification vianon-convex multi-task feature learning[J] . Neuro Computing, 2015, 152(25):322-332.
  • 6Chen Yuehui, Yang Bin, Meng Qingfang. Small-time scale network traffic prediction based on flexible neural tree[J] . Applied Soft Computing, 2012, 12(1):274-279.
  • 7Costa M, Healey J A. Multiscale entropy analysis of complex heart rate dynamics:discrimination of age and heart failure effects[J] . Cardiovascular Engineering, 2008, 8(2):88-93.
  • 8Xiang Zhengtao, Chen Yufeng, Li Yujin, et al. Predictability of aggregated traffic of gateways in wireless mesh network with AODV and DSDV routing protocols and RWP mobility model[J] . Wireless Personal Communication, 2014, 79(2):891-906.
  • 9Lake D E, Richman J S, Griffin M P, et al. Sample entropy analysis of neonatal heart rate variability[J] . American Journal of Physiology Regulatory, Integrative and Comparative Physiology, 2002, 283(3):R789-R797.
  • 10Perkins C E, Rpuier E M. Ad hoc on-demand distance vector routing[C] //Proc of the WMCSA. 1999:90-100.

共引文献134

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部